import QRMath from './QRMath'; class QRPolynomial { private num: number[]; constructor (num: number[], shift: number) { if (num.length === undefined) { throw new Error(num.length + '/' + shift); } let offset = 0; while (offset < num.length && num[offset] === 0) { offset++; } this.num = new Array(num.length - offset + shift); for (let i = 0; i < num.length - offset; i++) { this.num[i] = num[i + offset]!; } } get (index: number): number { return this.num[index]!; } getLength (): number { return this.num.length; } multiply (e: QRPolynomial): QRPolynomial { const num = new Array(this.getLength() + e.getLength() - 1); for (let i = 0; i < this.getLength(); i++) { for (let j = 0; j < e.getLength(); j++) { num[i + j] ^= QRMath.gexp(QRMath.glog(this.get(i)) + QRMath.glog(e.get(j))); } } return new QRPolynomial(num, 0); } mod (e: QRPolynomial): QRPolynomial { if (this.getLength() - e.getLength() < 0) { return this; } const ratio = QRMath.glog(this.get(0)) - QRMath.glog(e.get(0)); const num = new Array(this.getLength()); for (let i = 0; i < this.getLength(); i++) { num[i] = this.get(i); } for (let x = 0; x < e.getLength(); x++) { num[x] ^= QRMath.gexp(QRMath.glog(e.get(x)) + ratio); } // recursive call return new QRPolynomial(num, 0).mod(e); } } export default QRPolynomial;