feat(aichat): agent add memory

This commit is contained in:
源文雨
2026-01-03 23:36:49 +08:00
parent 91d512498d
commit 57c41a7db2
11 changed files with 512 additions and 922 deletions

246
plugin/llm/main.go Normal file
View File

@@ -0,0 +1,246 @@
// Package llm 大模型聊天和群聊总结
package llm
import (
"strconv"
"strings"
"time"
"github.com/fumiama/deepinfra"
"github.com/fumiama/deepinfra/model"
"github.com/tidwall/gjson"
zero "github.com/wdvxdr1123/ZeroBot"
"github.com/wdvxdr1123/ZeroBot/extension/single"
"github.com/wdvxdr1123/ZeroBot/message"
ctrl "github.com/FloatTech/zbpctrl"
"github.com/FloatTech/zbputils/chat"
"github.com/FloatTech/zbputils/control"
"github.com/FloatTech/zbputils/ctxext"
)
var (
// en data [8 temp] [8 rate] LSB
en = control.AutoRegister(&ctrl.Options[*zero.Ctx]{
DisableOnDefault: false,
Brief: "大模型聊天和群聊总结",
Help: "- 群聊总结 [消息数目]|群聊总结 1000\n" +
"- /gpt [内容] (使用大模型聊天)\n",
}).ApplySingle(single.New(
single.WithKeyFn(func(ctx *zero.Ctx) int64 {
if ctx.Event.GroupID == 0 {
return -ctx.Event.UserID
}
return ctx.Event.GroupID
}),
// no post option, silently quit
))
)
var (
limit = ctxext.NewLimiterManager(time.Second*30, 1)
)
func init() {
// 添加群聊总结功能
en.OnRegex(`^群聊总结\s?(\d*)$`, chat.EnsureConfig, zero.OnlyGroup, zero.AdminPermission).SetBlock(true).Limit(limit.LimitByGroup).Handle(func(ctx *zero.Ctx) {
ctx.SendChain(message.Text("少女思考中..."))
gid := ctx.Event.GroupID
if gid == 0 {
gid = -ctx.Event.UserID
}
p, _ := strconv.ParseInt(ctx.State["regex_matched"].([]string)[1], 10, 64)
if p > 1000 {
p = 1000
}
if p == 0 {
p = 200
}
group := ctx.GetGroupInfo(gid, false)
if group.MemberCount == 0 {
ctx.SendChain(message.Text(zero.BotConfig.NickName[0], "未加入", group.Name, "(", gid, "),无法获取总结"))
return
}
var messages []string
h := ctx.GetGroupMessageHistory(gid, 0, p, false)
h.Get("messages").ForEach(func(_, msgObj gjson.Result) bool {
nickname := msgObj.Get("sender.nickname").Str
text := strings.TrimSpace(message.ParseMessageFromString(msgObj.Get("raw_message").Str).ExtractPlainText())
if text != "" {
messages = append(messages, nickname+": "+text)
}
return true
})
if len(messages) == 0 {
ctx.SendChain(message.Text("ERROR: 历史消息为空或者无法获得历史消息"))
return
}
// 构造总结请求提示 (使用通用版省流提示词)
// 使用反引号定义多行字符串,更清晰
promptTemplate := `请对以下群聊对话进行【极简总结】。
要求:
1. 剔除客套与废话,直击主题。
2. 使用 Markdown 列表格式。
3. 按以下结构输出:
- 🎯 核心议题:(一句话概括)
- 💡 关键观点/结论:(提取3-5个重点)
- ✅ 下一步/待办:(如果有,明确谁做什么)
群聊对话内容如下:
`
summaryPrompt := promptTemplate + strings.Join(messages, "\n")
stor, err := chat.NewStorage(ctx, gid)
if err != nil {
ctx.SendChain(message.Text("ERROR: ", err))
return
}
// 调用大模型API进行总结
summary, err := llmchat(summaryPrompt, stor.Temp())
if err != nil {
ctx.SendChain(message.Text("ERROR: ", err))
return
}
var b strings.Builder
b.WriteString("群 ")
b.WriteString(group.Name)
b.WriteByte('(')
b.WriteString(strconv.FormatInt(gid, 10))
b.WriteString(") 的 ")
b.WriteString(strconv.FormatInt(p, 10))
b.WriteString(" 条消息总结:\n\n")
b.WriteString(summary)
// 分割总结内容为多段按1000字符长度切割
summaryText := b.String()
msg := make(message.Message, 0)
for len(summaryText) > 0 {
if len(summaryText) <= 1000 {
msg = append(msg, ctxext.FakeSenderForwardNode(ctx, message.Text(summaryText)))
break
}
// 查找1000字符内的最后一个换行符尽量在换行处分割
chunk := summaryText[:1000]
lastNewline := strings.LastIndex(chunk, "\n")
if lastNewline > 0 {
chunk = summaryText[:lastNewline+1]
}
msg = append(msg, ctxext.FakeSenderForwardNode(ctx, message.Text(chunk)))
summaryText = summaryText[len(chunk):]
}
if len(msg) > 0 {
ctx.Send(msg)
}
})
// 添加 /gpt 命令处理(同时支持回复消息和直接使用)
en.OnKeyword("/gpt", chat.EnsureConfig).SetBlock(true).Handle(func(ctx *zero.Ctx) {
gid := ctx.Event.GroupID
if gid == 0 {
gid = -ctx.Event.UserID
}
text := ctx.MessageString()
var query string
var replyContent string
// 检查是否是回复消息 (使用MessageElement检查而不是CQ码)
for _, elem := range ctx.Event.Message {
if elem.Type == "reply" {
// 提取被回复的消息ID
replyIDStr := elem.Data["id"]
replyID, err := strconv.ParseInt(replyIDStr, 10, 64)
if err == nil {
// 获取被回复的消息内容
replyMsg := ctx.GetMessage(replyID)
if replyMsg.Elements != nil {
replyContent = replyMsg.Elements.ExtractPlainText()
}
}
break // 找到回复元素后退出循环
}
}
// 提取 /gpt 后面的内容
parts := strings.SplitN(text, "/gpt", 2)
var gContent string
if len(parts) > 1 {
gContent = strings.TrimSpace(parts[1])
}
// 组合内容:优先使用回复内容,如果同时有/gpt内容则拼接
switch {
case replyContent != "" && gContent != "":
query = replyContent + "\n" + gContent
case replyContent != "":
query = replyContent
case gContent != "":
query = gContent
default:
return
}
stor, err := chat.NewStorage(ctx, gid)
if err != nil {
ctx.SendChain(message.Text("ERROR: ", err))
return
}
// 调用大模型API进行聊天
reply, err := llmchat(query, stor.Temp())
if err != nil {
ctx.SendChain(message.Text("ERROR: ", err))
return
}
// 分割总结内容为多段按1000字符长度切割
msg := make(message.Message, 0)
for len(reply) > 0 {
if len(reply) <= 1000 {
msg = append(msg, ctxext.FakeSenderForwardNode(ctx, message.Text(reply)))
break
}
// 查找1000字符内的最后一个换行符尽量在换行处分割
chunk := reply[:1000]
lastNewline := strings.LastIndex(chunk, "\n")
if lastNewline > 0 {
chunk = reply[:lastNewline+1]
}
msg = append(msg, ctxext.FakeSenderForwardNode(ctx, message.Text(chunk)))
reply = reply[len(chunk):]
}
if len(msg) > 0 {
ctx.Send(msg)
}
})
}
// llmchat 调用大模型API包装
func llmchat(prompt string, temp float32) (string, error) {
topp, maxn := chat.AC.MParams()
x := deepinfra.NewAPI(chat.AC.API, string(chat.AC.Key))
mod, err := chat.AC.Type.Protocol(chat.AC.ModelName, temp, topp, maxn)
if err != nil {
return "", nil
}
data, err := x.Request(mod.User(model.NewContentText(prompt)))
if err != nil {
return "", err
}
return strings.TrimSpace(data), nil
}