mirror of
https://github.com/CherryHQ/cherry-studio.git
synced 2026-01-02 10:29:02 +08:00
Merge branch 'feat/agents-new' of github.com:CherryHQ/cherry-studio into feat/agents-new
This commit is contained in:
commit
0cce8220ce
@ -9,6 +9,7 @@ import { setupOpenAPIDocumentation } from './middleware/openapi'
|
||||
import { agentsRoutes } from './routes/agents'
|
||||
import { chatRoutes } from './routes/chat'
|
||||
import { mcpRoutes } from './routes/mcp'
|
||||
import { messagesRoutes } from './routes/messages'
|
||||
import { modelsRoutes } from './routes/models'
|
||||
|
||||
const logger = loggerService.withContext('ApiServer')
|
||||
@ -114,6 +115,7 @@ apiRouter.use(express.json())
|
||||
// Mount routes
|
||||
apiRouter.use('/chat', chatRoutes)
|
||||
apiRouter.use('/mcps', mcpRoutes)
|
||||
apiRouter.use('/messages', messagesRoutes)
|
||||
apiRouter.use('/models', modelsRoutes)
|
||||
apiRouter.use('/agents', agentsRoutes)
|
||||
app.use('/v1', apiRouter)
|
||||
|
||||
@ -1,15 +1,105 @@
|
||||
import express, { Request, Response } from 'express'
|
||||
import OpenAI from 'openai'
|
||||
import { ChatCompletionCreateParams } from 'openai/resources'
|
||||
|
||||
import { loggerService } from '../../services/LoggerService'
|
||||
import { chatCompletionService } from '../services/chat-completion'
|
||||
import { validateModelId } from '../utils'
|
||||
import {
|
||||
ChatCompletionModelError,
|
||||
chatCompletionService,
|
||||
ChatCompletionValidationError
|
||||
} from '../services/chat-completion'
|
||||
|
||||
const logger = loggerService.withContext('ApiServerChatRoutes')
|
||||
|
||||
const router = express.Router()
|
||||
|
||||
interface ErrorResponseBody {
|
||||
error: {
|
||||
message: string
|
||||
type: string
|
||||
code: string
|
||||
}
|
||||
}
|
||||
|
||||
const mapChatCompletionError = (error: unknown): { status: number; body: ErrorResponseBody } => {
|
||||
if (error instanceof ChatCompletionValidationError) {
|
||||
logger.warn('Chat completion validation error:', {
|
||||
errors: error.errors
|
||||
})
|
||||
|
||||
return {
|
||||
status: 400,
|
||||
body: {
|
||||
error: {
|
||||
message: error.errors.join('; '),
|
||||
type: 'invalid_request_error',
|
||||
code: 'validation_failed'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (error instanceof ChatCompletionModelError) {
|
||||
logger.warn('Chat completion model error:', error.error)
|
||||
|
||||
return {
|
||||
status: 400,
|
||||
body: {
|
||||
error: {
|
||||
message: error.error.message,
|
||||
type: 'invalid_request_error',
|
||||
code: error.error.code
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (error instanceof Error) {
|
||||
let statusCode = 500
|
||||
let errorType = 'server_error'
|
||||
let errorCode = 'internal_error'
|
||||
|
||||
if (error.message.includes('API key') || error.message.includes('authentication')) {
|
||||
statusCode = 401
|
||||
errorType = 'authentication_error'
|
||||
errorCode = 'invalid_api_key'
|
||||
} else if (error.message.includes('rate limit') || error.message.includes('quota')) {
|
||||
statusCode = 429
|
||||
errorType = 'rate_limit_error'
|
||||
errorCode = 'rate_limit_exceeded'
|
||||
} else if (error.message.includes('timeout') || error.message.includes('connection')) {
|
||||
statusCode = 502
|
||||
errorType = 'server_error'
|
||||
errorCode = 'upstream_error'
|
||||
}
|
||||
|
||||
logger.error('Chat completion error:', { error })
|
||||
|
||||
return {
|
||||
status: statusCode,
|
||||
body: {
|
||||
error: {
|
||||
message: error.message || 'Internal server error',
|
||||
type: errorType,
|
||||
code: errorCode
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
logger.error('Chat completion unknown error:', { error })
|
||||
|
||||
return {
|
||||
status: 500,
|
||||
body: {
|
||||
error: {
|
||||
message: 'Internal server error',
|
||||
type: 'server_error',
|
||||
code: 'internal_error'
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @swagger
|
||||
* /v1/chat/completions:
|
||||
@ -60,7 +150,7 @@ const router = express.Router()
|
||||
* type: integer
|
||||
* total_tokens:
|
||||
* type: integer
|
||||
* text/plain:
|
||||
* text/event-stream:
|
||||
* schema:
|
||||
* type: string
|
||||
* description: Server-sent events stream (when stream=true)
|
||||
@ -110,63 +200,22 @@ router.post('/completions', async (req: Request, res: Response) => {
|
||||
temperature: request.temperature
|
||||
})
|
||||
|
||||
// Validate request
|
||||
const validation = chatCompletionService.validateRequest(request)
|
||||
if (!validation.isValid) {
|
||||
return res.status(400).json({
|
||||
error: {
|
||||
message: validation.errors.join('; '),
|
||||
type: 'invalid_request_error',
|
||||
code: 'validation_failed'
|
||||
}
|
||||
})
|
||||
}
|
||||
const isStreaming = !!request.stream
|
||||
|
||||
// Validate model ID and get provider
|
||||
const modelValidation = await validateModelId(request.model)
|
||||
if (!modelValidation.valid) {
|
||||
const error = modelValidation.error!
|
||||
logger.warn(`Model validation failed for '${request.model}':`, error)
|
||||
return res.status(400).json({
|
||||
error: {
|
||||
message: error.message,
|
||||
type: 'invalid_request_error',
|
||||
code: error.code
|
||||
}
|
||||
})
|
||||
}
|
||||
if (isStreaming) {
|
||||
const { stream } = await chatCompletionService.processStreamingCompletion(request)
|
||||
|
||||
const provider = modelValidation.provider!
|
||||
const modelId = modelValidation.modelId!
|
||||
|
||||
logger.info('Model validation successful:', {
|
||||
provider: provider.id,
|
||||
providerType: provider.type,
|
||||
modelId: modelId,
|
||||
fullModelId: request.model
|
||||
})
|
||||
|
||||
// Create OpenAI client
|
||||
const client = new OpenAI({
|
||||
baseURL: provider.apiHost,
|
||||
apiKey: provider.apiKey
|
||||
})
|
||||
request.model = modelId
|
||||
|
||||
// Handle streaming
|
||||
if (request.stream) {
|
||||
const streamResponse = await client.chat.completions.create(request)
|
||||
|
||||
res.setHeader('Content-Type', 'text/plain; charset=utf-8')
|
||||
res.setHeader('Cache-Control', 'no-cache')
|
||||
res.setHeader('Content-Type', 'text/event-stream; charset=utf-8')
|
||||
res.setHeader('Cache-Control', 'no-cache, no-transform')
|
||||
res.setHeader('Connection', 'keep-alive')
|
||||
res.setHeader('X-Accel-Buffering', 'no')
|
||||
res.flushHeaders()
|
||||
|
||||
try {
|
||||
for await (const chunk of streamResponse as any) {
|
||||
for await (const chunk of stream) {
|
||||
res.write(`data: ${JSON.stringify(chunk)}\n\n`)
|
||||
}
|
||||
res.write('data: [DONE]\n\n')
|
||||
res.end()
|
||||
} catch (streamError: any) {
|
||||
logger.error('Stream error:', streamError)
|
||||
res.write(
|
||||
@ -178,47 +227,17 @@ router.post('/completions', async (req: Request, res: Response) => {
|
||||
}
|
||||
})}\n\n`
|
||||
)
|
||||
} finally {
|
||||
res.end()
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Handle non-streaming
|
||||
const response = await client.chat.completions.create(request)
|
||||
const { response } = await chatCompletionService.processCompletion(request)
|
||||
return res.json(response)
|
||||
} catch (error: any) {
|
||||
logger.error('Chat completion error:', error)
|
||||
|
||||
let statusCode = 500
|
||||
let errorType = 'server_error'
|
||||
let errorCode = 'internal_error'
|
||||
let errorMessage = 'Internal server error'
|
||||
|
||||
if (error instanceof Error) {
|
||||
errorMessage = error.message
|
||||
|
||||
if (error.message.includes('API key') || error.message.includes('authentication')) {
|
||||
statusCode = 401
|
||||
errorType = 'authentication_error'
|
||||
errorCode = 'invalid_api_key'
|
||||
} else if (error.message.includes('rate limit') || error.message.includes('quota')) {
|
||||
statusCode = 429
|
||||
errorType = 'rate_limit_error'
|
||||
errorCode = 'rate_limit_exceeded'
|
||||
} else if (error.message.includes('timeout') || error.message.includes('connection')) {
|
||||
statusCode = 502
|
||||
errorType = 'server_error'
|
||||
errorCode = 'upstream_error'
|
||||
}
|
||||
}
|
||||
|
||||
return res.status(statusCode).json({
|
||||
error: {
|
||||
message: errorMessage,
|
||||
type: errorType,
|
||||
code: errorCode
|
||||
}
|
||||
})
|
||||
} catch (error: unknown) {
|
||||
const { status, body } = mapChatCompletionError(error)
|
||||
return res.status(status).json(body)
|
||||
}
|
||||
})
|
||||
|
||||
|
||||
290
src/main/apiServer/routes/messages.ts
Normal file
290
src/main/apiServer/routes/messages.ts
Normal file
@ -0,0 +1,290 @@
|
||||
import { MessageCreateParams } from '@anthropic-ai/sdk/resources'
|
||||
import express, { Request, Response } from 'express'
|
||||
|
||||
import { loggerService } from '../../services/LoggerService'
|
||||
import { messagesService } from '../services/messages'
|
||||
import { validateModelId } from '../utils'
|
||||
|
||||
const logger = loggerService.withContext('ApiServerMessagesRoutes')
|
||||
|
||||
const router = express.Router()
|
||||
|
||||
/**
|
||||
* @swagger
|
||||
* /v1/messages:
|
||||
* post:
|
||||
* summary: Create message
|
||||
* description: Create a message response using Anthropic's API format
|
||||
* tags: [Messages]
|
||||
* requestBody:
|
||||
* required: true
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* type: object
|
||||
* required:
|
||||
* - model
|
||||
* - max_tokens
|
||||
* - messages
|
||||
* properties:
|
||||
* model:
|
||||
* type: string
|
||||
* description: Model ID in format "provider:model_id"
|
||||
* example: "my-anthropic:claude-3-5-sonnet-20241022"
|
||||
* max_tokens:
|
||||
* type: integer
|
||||
* minimum: 1
|
||||
* description: Maximum number of tokens to generate
|
||||
* example: 1024
|
||||
* messages:
|
||||
* type: array
|
||||
* items:
|
||||
* type: object
|
||||
* properties:
|
||||
* role:
|
||||
* type: string
|
||||
* enum: [user, assistant]
|
||||
* content:
|
||||
* oneOf:
|
||||
* - type: string
|
||||
* - type: array
|
||||
* system:
|
||||
* type: string
|
||||
* description: System message
|
||||
* temperature:
|
||||
* type: number
|
||||
* minimum: 0
|
||||
* maximum: 1
|
||||
* description: Sampling temperature
|
||||
* top_p:
|
||||
* type: number
|
||||
* minimum: 0
|
||||
* maximum: 1
|
||||
* description: Nucleus sampling
|
||||
* top_k:
|
||||
* type: integer
|
||||
* minimum: 0
|
||||
* description: Top-k sampling
|
||||
* stream:
|
||||
* type: boolean
|
||||
* description: Whether to stream the response
|
||||
* tools:
|
||||
* type: array
|
||||
* description: Available tools for the model
|
||||
* responses:
|
||||
* 200:
|
||||
* description: Message response
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* type: object
|
||||
* properties:
|
||||
* id:
|
||||
* type: string
|
||||
* type:
|
||||
* type: string
|
||||
* example: message
|
||||
* role:
|
||||
* type: string
|
||||
* example: assistant
|
||||
* content:
|
||||
* type: array
|
||||
* items:
|
||||
* type: object
|
||||
* model:
|
||||
* type: string
|
||||
* stop_reason:
|
||||
* type: string
|
||||
* stop_sequence:
|
||||
* type: string
|
||||
* usage:
|
||||
* type: object
|
||||
* properties:
|
||||
* input_tokens:
|
||||
* type: integer
|
||||
* output_tokens:
|
||||
* type: integer
|
||||
* text/event-stream:
|
||||
* schema:
|
||||
* type: string
|
||||
* description: Server-sent events stream (when stream=true)
|
||||
* 400:
|
||||
* description: Bad request
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* type: object
|
||||
* properties:
|
||||
* type:
|
||||
* type: string
|
||||
* example: error
|
||||
* error:
|
||||
* type: object
|
||||
* properties:
|
||||
* type:
|
||||
* type: string
|
||||
* message:
|
||||
* type: string
|
||||
* 401:
|
||||
* description: Unauthorized
|
||||
* 429:
|
||||
* description: Rate limit exceeded
|
||||
* 500:
|
||||
* description: Internal server error
|
||||
*/
|
||||
router.post('/', async (req: Request, res: Response) => {
|
||||
try {
|
||||
const request: MessageCreateParams = req.body
|
||||
|
||||
if (!request) {
|
||||
return res.status(400).json({
|
||||
type: 'error',
|
||||
error: {
|
||||
type: 'invalid_request_error',
|
||||
message: 'Request body is required'
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
logger.info('Anthropic message request:', {
|
||||
model: request.model,
|
||||
messageCount: request.messages?.length || 0,
|
||||
stream: request.stream,
|
||||
max_tokens: request.max_tokens,
|
||||
temperature: request.temperature
|
||||
})
|
||||
|
||||
// Validate model ID and get provider
|
||||
const modelValidation = await validateModelId(request.model)
|
||||
if (!modelValidation.valid) {
|
||||
const error = modelValidation.error!
|
||||
logger.warn(`Model validation failed for '${request.model}':`, error)
|
||||
return res.status(400).json({
|
||||
type: 'error',
|
||||
error: {
|
||||
type: 'invalid_request_error',
|
||||
message: error.message
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
const provider = modelValidation.provider!
|
||||
|
||||
// Ensure provider is Anthropic type
|
||||
if (provider.type !== 'anthropic') {
|
||||
return res.status(400).json({
|
||||
type: 'error',
|
||||
error: {
|
||||
type: 'invalid_request_error',
|
||||
message: `Invalid provider type '${provider.type}' for messages endpoint. Expected 'anthropic' provider.`
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
const modelId = modelValidation.modelId!
|
||||
request.model = modelId
|
||||
|
||||
logger.info('Model validation successful:', {
|
||||
provider: provider.id,
|
||||
providerType: provider.type,
|
||||
modelId: modelId,
|
||||
fullModelId: request.model
|
||||
})
|
||||
|
||||
// Validate request
|
||||
const validation = messagesService.validateRequest(request)
|
||||
if (!validation.isValid) {
|
||||
return res.status(400).json({
|
||||
type: 'error',
|
||||
error: {
|
||||
type: 'invalid_request_error',
|
||||
message: validation.errors.join('; ')
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
// Handle streaming
|
||||
if (request.stream) {
|
||||
res.setHeader('Content-Type', 'text/event-stream; charset=utf-8')
|
||||
res.setHeader('Cache-Control', 'no-cache, no-transform')
|
||||
res.setHeader('Connection', 'keep-alive')
|
||||
res.setHeader('X-Accel-Buffering', 'no')
|
||||
res.flushHeaders()
|
||||
|
||||
try {
|
||||
for await (const chunk of messagesService.processStreamingMessage(request, provider)) {
|
||||
res.write(`data: ${JSON.stringify(chunk)}\n\n`)
|
||||
}
|
||||
res.write('data: [DONE]\n\n')
|
||||
} catch (streamError: any) {
|
||||
logger.error('Stream error:', streamError)
|
||||
res.write(
|
||||
`data: ${JSON.stringify({
|
||||
type: 'error',
|
||||
error: {
|
||||
type: 'api_error',
|
||||
message: 'Stream processing error'
|
||||
}
|
||||
})}\n\n`
|
||||
)
|
||||
} finally {
|
||||
res.end()
|
||||
}
|
||||
return
|
||||
}
|
||||
|
||||
// Handle non-streaming
|
||||
const response = await messagesService.processMessage(request, provider)
|
||||
return res.json(response)
|
||||
} catch (error: any) {
|
||||
logger.error('Anthropic message error:', error)
|
||||
|
||||
let statusCode = 500
|
||||
let errorType = 'api_error'
|
||||
let errorMessage = 'Internal server error'
|
||||
|
||||
const anthropicStatus = typeof error?.status === 'number' ? error.status : undefined
|
||||
const anthropicError = error?.error
|
||||
|
||||
if (anthropicStatus) {
|
||||
statusCode = anthropicStatus
|
||||
}
|
||||
|
||||
if (anthropicError?.type) {
|
||||
errorType = anthropicError.type
|
||||
}
|
||||
|
||||
if (anthropicError?.message) {
|
||||
errorMessage = anthropicError.message
|
||||
} else if (error instanceof Error && error.message) {
|
||||
errorMessage = error.message
|
||||
}
|
||||
|
||||
if (!anthropicStatus && error instanceof Error) {
|
||||
if (error.message.includes('API key') || error.message.includes('authentication')) {
|
||||
statusCode = 401
|
||||
errorType = 'authentication_error'
|
||||
} else if (error.message.includes('rate limit') || error.message.includes('quota')) {
|
||||
statusCode = 429
|
||||
errorType = 'rate_limit_error'
|
||||
} else if (error.message.includes('timeout') || error.message.includes('connection')) {
|
||||
statusCode = 502
|
||||
errorType = 'api_error'
|
||||
} else if (error.message.includes('validation') || error.message.includes('invalid')) {
|
||||
statusCode = 400
|
||||
errorType = 'invalid_request_error'
|
||||
}
|
||||
}
|
||||
|
||||
return res.status(statusCode).json({
|
||||
type: 'error',
|
||||
error: {
|
||||
type: errorType,
|
||||
message: errorMessage,
|
||||
requestId: error?.request_id
|
||||
}
|
||||
})
|
||||
}
|
||||
})
|
||||
|
||||
export { router as messagesRoutes }
|
||||
@ -1,73 +1,129 @@
|
||||
import express, { Request, Response } from 'express'
|
||||
|
||||
import { loggerService } from '../../services/LoggerService'
|
||||
import { chatCompletionService } from '../services/chat-completion'
|
||||
import { ModelsFilterSchema, modelsService } from '../services/models'
|
||||
|
||||
const logger = loggerService.withContext('ApiServerModelsRoutes')
|
||||
|
||||
const router = express.Router()
|
||||
const router = express
|
||||
.Router()
|
||||
|
||||
/**
|
||||
* @swagger
|
||||
* /v1/models:
|
||||
* get:
|
||||
* summary: List available models
|
||||
* description: Returns a list of available AI models from all configured providers
|
||||
* tags: [Models]
|
||||
* responses:
|
||||
* 200:
|
||||
* description: List of available models
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* type: object
|
||||
* properties:
|
||||
* object:
|
||||
* type: string
|
||||
* example: list
|
||||
* data:
|
||||
* type: array
|
||||
* items:
|
||||
* $ref: '#/components/schemas/Model'
|
||||
* 503:
|
||||
* description: Service unavailable
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* $ref: '#/components/schemas/Error'
|
||||
*/
|
||||
router.get('/', async (_req: Request, res: Response) => {
|
||||
try {
|
||||
logger.info('Models list request received')
|
||||
/**
|
||||
* @swagger
|
||||
* /v1/models:
|
||||
* get:
|
||||
* summary: List available models
|
||||
* description: Returns a list of available AI models from all configured providers with optional filtering
|
||||
* tags: [Models]
|
||||
* parameters:
|
||||
* - in: query
|
||||
* name: provider
|
||||
* schema:
|
||||
* type: string
|
||||
* enum: [openai, anthropic]
|
||||
* description: Filter models by provider type
|
||||
* - in: query
|
||||
* name: offset
|
||||
* schema:
|
||||
* type: integer
|
||||
* minimum: 0
|
||||
* default: 0
|
||||
* description: Pagination offset
|
||||
* - in: query
|
||||
* name: limit
|
||||
* schema:
|
||||
* type: integer
|
||||
* minimum: 1
|
||||
* description: Maximum number of models to return
|
||||
* responses:
|
||||
* 200:
|
||||
* description: List of available models
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* type: object
|
||||
* properties:
|
||||
* object:
|
||||
* type: string
|
||||
* example: list
|
||||
* data:
|
||||
* type: array
|
||||
* items:
|
||||
* $ref: '#/components/schemas/Model'
|
||||
* total:
|
||||
* type: integer
|
||||
* description: Total number of models (when using pagination)
|
||||
* offset:
|
||||
* type: integer
|
||||
* description: Current offset (when using pagination)
|
||||
* limit:
|
||||
* type: integer
|
||||
* description: Current limit (when using pagination)
|
||||
* 400:
|
||||
* description: Invalid query parameters
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* $ref: '#/components/schemas/Error'
|
||||
* 503:
|
||||
* description: Service unavailable
|
||||
* content:
|
||||
* application/json:
|
||||
* schema:
|
||||
* $ref: '#/components/schemas/Error'
|
||||
*/
|
||||
.get('/', async (req: Request, res: Response) => {
|
||||
try {
|
||||
logger.info('Models list request received', { query: req.query })
|
||||
|
||||
const models = await chatCompletionService.getModels()
|
||||
// Validate query parameters using Zod schema
|
||||
const filterResult = ModelsFilterSchema.safeParse(req.query)
|
||||
|
||||
if (models.length === 0) {
|
||||
logger.warn(
|
||||
'No models available from providers. This may be because no OpenAI providers are configured or enabled.'
|
||||
)
|
||||
}
|
||||
|
||||
logger.info(`Returning ${models.length} models (OpenAI providers only)`)
|
||||
logger.debug(
|
||||
'Model IDs:',
|
||||
models.map((m) => m.id)
|
||||
)
|
||||
|
||||
return res.json({
|
||||
object: 'list',
|
||||
data: models
|
||||
})
|
||||
} catch (error: any) {
|
||||
logger.error('Error fetching models:', error)
|
||||
return res.status(503).json({
|
||||
error: {
|
||||
message: 'Failed to retrieve models from available providers',
|
||||
type: 'service_unavailable',
|
||||
code: 'models_unavailable'
|
||||
if (!filterResult.success) {
|
||||
logger.warn('Invalid query parameters:', filterResult.error.issues)
|
||||
return res.status(400).json({
|
||||
error: {
|
||||
message: 'Invalid query parameters',
|
||||
type: 'invalid_request_error',
|
||||
code: 'invalid_parameters',
|
||||
details: filterResult.error.issues.map((issue) => ({
|
||||
field: issue.path.join('.'),
|
||||
message: issue.message
|
||||
}))
|
||||
}
|
||||
})
|
||||
}
|
||||
})
|
||||
}
|
||||
})
|
||||
|
||||
const filter = filterResult.data
|
||||
const response = await modelsService.getModels(filter)
|
||||
|
||||
if (response.data.length === 0) {
|
||||
logger.warn(
|
||||
'No models available from providers. This may be because no OpenAI/Anthropic providers are configured or enabled.',
|
||||
{ filter }
|
||||
)
|
||||
}
|
||||
|
||||
logger.info(`Returning ${response.data.length} models`, {
|
||||
filter,
|
||||
total: response.total
|
||||
})
|
||||
logger.debug(
|
||||
'Model IDs:',
|
||||
response.data.map((m) => m.id)
|
||||
)
|
||||
|
||||
return res.json(response)
|
||||
} catch (error: any) {
|
||||
logger.error('Error fetching models:', error)
|
||||
return res.status(503).json({
|
||||
error: {
|
||||
message: 'Failed to retrieve models from available providers',
|
||||
type: 'service_unavailable',
|
||||
code: 'models_unavailable'
|
||||
}
|
||||
})
|
||||
}
|
||||
})
|
||||
|
||||
export { router as modelsRoutes }
|
||||
|
||||
@ -1,83 +1,131 @@
|
||||
import { Provider } from '@types'
|
||||
import OpenAI from 'openai'
|
||||
import { ChatCompletionCreateParams } from 'openai/resources'
|
||||
import { ChatCompletionCreateParams, ChatCompletionCreateParamsStreaming } from 'openai/resources'
|
||||
|
||||
import { loggerService } from '../../services/LoggerService'
|
||||
import {
|
||||
getProviderByModel,
|
||||
getRealProviderModel,
|
||||
listAllAvailableModels,
|
||||
OpenAICompatibleModel,
|
||||
transformModelToOpenAI,
|
||||
validateProvider
|
||||
} from '../utils'
|
||||
import { ModelValidationError, validateModelId } from '../utils'
|
||||
|
||||
const logger = loggerService.withContext('ChatCompletionService')
|
||||
|
||||
export interface ModelData extends OpenAICompatibleModel {
|
||||
provider_id: string
|
||||
model_id: string
|
||||
name: string
|
||||
}
|
||||
|
||||
export interface ValidationResult {
|
||||
isValid: boolean
|
||||
errors: string[]
|
||||
}
|
||||
|
||||
export class ChatCompletionValidationError extends Error {
|
||||
constructor(public readonly errors: string[]) {
|
||||
super(`Request validation failed: ${errors.join('; ')}`)
|
||||
this.name = 'ChatCompletionValidationError'
|
||||
}
|
||||
}
|
||||
|
||||
export class ChatCompletionModelError extends Error {
|
||||
constructor(public readonly error: ModelValidationError) {
|
||||
super(`Model validation failed: ${error.message}`)
|
||||
this.name = 'ChatCompletionModelError'
|
||||
}
|
||||
}
|
||||
|
||||
export type PrepareRequestResult =
|
||||
| { status: 'validation_error'; errors: string[] }
|
||||
| { status: 'model_error'; error: ModelValidationError }
|
||||
| {
|
||||
status: 'ok'
|
||||
provider: Provider
|
||||
modelId: string
|
||||
client: OpenAI
|
||||
providerRequest: ChatCompletionCreateParams
|
||||
}
|
||||
|
||||
export class ChatCompletionService {
|
||||
async getModels(): Promise<ModelData[]> {
|
||||
try {
|
||||
logger.info('Getting available models from providers')
|
||||
async resolveProviderContext(model: string): Promise<
|
||||
| { ok: false; error: ModelValidationError }
|
||||
| { ok: true; provider: Provider; modelId: string; client: OpenAI }
|
||||
> {
|
||||
const modelValidation = await validateModelId(model)
|
||||
if (!modelValidation.valid) {
|
||||
return {
|
||||
ok: false,
|
||||
error: modelValidation.error!
|
||||
}
|
||||
}
|
||||
|
||||
const models = await listAllAvailableModels()
|
||||
const provider = modelValidation.provider!
|
||||
|
||||
// Use Map to deduplicate models by their full ID (provider:model_id)
|
||||
const uniqueModels = new Map<string, ModelData>()
|
||||
|
||||
for (const model of models) {
|
||||
const openAIModel = transformModelToOpenAI(model)
|
||||
const fullModelId = openAIModel.id // This is already in format "provider:model_id"
|
||||
|
||||
// Only add if not already present (first occurrence wins)
|
||||
if (!uniqueModels.has(fullModelId)) {
|
||||
uniqueModels.set(fullModelId, {
|
||||
...openAIModel,
|
||||
provider_id: model.provider,
|
||||
model_id: model.id,
|
||||
name: model.name
|
||||
})
|
||||
} else {
|
||||
logger.debug(`Skipping duplicate model: ${fullModelId}`)
|
||||
if (provider.type !== 'openai') {
|
||||
return {
|
||||
ok: false,
|
||||
error: {
|
||||
type: 'unsupported_provider_type',
|
||||
message: `Provider '${provider.id}' of type '${provider.type}' is not supported for OpenAI chat completions`,
|
||||
code: 'unsupported_provider_type'
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
const modelData = Array.from(uniqueModels.values())
|
||||
const modelId = modelValidation.modelId!
|
||||
|
||||
logger.info(`Successfully retrieved ${modelData.length} unique models from ${models.length} total models`)
|
||||
const client = new OpenAI({
|
||||
baseURL: provider.apiHost,
|
||||
apiKey: provider.apiKey
|
||||
})
|
||||
|
||||
if (models.length > modelData.length) {
|
||||
logger.debug(`Filtered out ${models.length - modelData.length} duplicate models`)
|
||||
return {
|
||||
ok: true,
|
||||
provider,
|
||||
modelId,
|
||||
client
|
||||
}
|
||||
}
|
||||
|
||||
async prepareRequest(request: ChatCompletionCreateParams, stream: boolean): Promise<PrepareRequestResult> {
|
||||
const requestValidation = this.validateRequest(request)
|
||||
if (!requestValidation.isValid) {
|
||||
return {
|
||||
status: 'validation_error',
|
||||
errors: requestValidation.errors
|
||||
}
|
||||
}
|
||||
|
||||
return modelData
|
||||
} catch (error: any) {
|
||||
logger.error('Error getting models:', error)
|
||||
return []
|
||||
const providerContext = await this.resolveProviderContext(request.model!)
|
||||
if (!providerContext.ok) {
|
||||
return {
|
||||
status: 'model_error',
|
||||
error: providerContext.error
|
||||
}
|
||||
}
|
||||
|
||||
const { provider, modelId, client } = providerContext
|
||||
|
||||
logger.info('Model validation successful:', {
|
||||
provider: provider.id,
|
||||
providerType: provider.type,
|
||||
modelId,
|
||||
fullModelId: request.model
|
||||
})
|
||||
|
||||
return {
|
||||
status: 'ok',
|
||||
provider,
|
||||
modelId,
|
||||
client,
|
||||
providerRequest: stream
|
||||
? {
|
||||
...request,
|
||||
model: modelId,
|
||||
stream: true as const
|
||||
}
|
||||
: {
|
||||
...request,
|
||||
model: modelId,
|
||||
stream: false as const
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
validateRequest(request: ChatCompletionCreateParams): ValidationResult {
|
||||
const errors: string[] = []
|
||||
|
||||
// Validate model
|
||||
if (!request.model) {
|
||||
errors.push('Model is required')
|
||||
} else if (typeof request.model !== 'string') {
|
||||
errors.push('Model must be a string')
|
||||
} else if (!request.model.includes(':')) {
|
||||
errors.push('Model must be in format "provider:model_id"')
|
||||
}
|
||||
|
||||
// Validate messages
|
||||
if (!request.messages) {
|
||||
errors.push('Messages array is required')
|
||||
@ -98,17 +146,6 @@ export class ChatCompletionService {
|
||||
}
|
||||
|
||||
// Validate optional parameters
|
||||
if (request.temperature !== undefined) {
|
||||
if (typeof request.temperature !== 'number' || request.temperature < 0 || request.temperature > 2) {
|
||||
errors.push('Temperature must be a number between 0 and 2')
|
||||
}
|
||||
}
|
||||
|
||||
if (request.max_tokens !== undefined) {
|
||||
if (typeof request.max_tokens !== 'number' || request.max_tokens < 1) {
|
||||
errors.push('max_tokens must be a positive number')
|
||||
}
|
||||
}
|
||||
|
||||
return {
|
||||
isValid: errors.length === 0,
|
||||
@ -116,7 +153,11 @@ export class ChatCompletionService {
|
||||
}
|
||||
}
|
||||
|
||||
async processCompletion(request: ChatCompletionCreateParams): Promise<OpenAI.Chat.Completions.ChatCompletion> {
|
||||
async processCompletion(request: ChatCompletionCreateParams): Promise<{
|
||||
provider: Provider
|
||||
modelId: string
|
||||
response: OpenAI.Chat.Completions.ChatCompletion
|
||||
}> {
|
||||
try {
|
||||
logger.info('Processing chat completion request:', {
|
||||
model: request.model,
|
||||
@ -124,38 +165,16 @@ export class ChatCompletionService {
|
||||
stream: request.stream
|
||||
})
|
||||
|
||||
// Validate request
|
||||
const validation = this.validateRequest(request)
|
||||
if (!validation.isValid) {
|
||||
throw new Error(`Request validation failed: ${validation.errors.join(', ')}`)
|
||||
const preparation = await this.prepareRequest(request, false)
|
||||
if (preparation.status === 'validation_error') {
|
||||
throw new ChatCompletionValidationError(preparation.errors)
|
||||
}
|
||||
|
||||
// Get provider for the model
|
||||
const provider = await getProviderByModel(request.model!)
|
||||
if (!provider) {
|
||||
throw new Error(`Provider not found for model: ${request.model}`)
|
||||
if (preparation.status === 'model_error') {
|
||||
throw new ChatCompletionModelError(preparation.error)
|
||||
}
|
||||
|
||||
// Validate provider
|
||||
if (!validateProvider(provider)) {
|
||||
throw new Error(`Provider validation failed for: ${provider.id}`)
|
||||
}
|
||||
|
||||
// Extract model ID from the full model string
|
||||
const modelId = getRealProviderModel(request.model)
|
||||
|
||||
// Create OpenAI client for the provider
|
||||
const client = new OpenAI({
|
||||
baseURL: provider.apiHost,
|
||||
apiKey: provider.apiKey
|
||||
})
|
||||
|
||||
// Prepare request with the actual model ID
|
||||
const providerRequest = {
|
||||
...request,
|
||||
model: modelId,
|
||||
stream: false
|
||||
}
|
||||
const { provider, modelId, client, providerRequest } = preparation
|
||||
|
||||
logger.debug('Sending request to provider:', {
|
||||
provider: provider.id,
|
||||
@ -166,54 +185,40 @@ export class ChatCompletionService {
|
||||
const response = (await client.chat.completions.create(providerRequest)) as OpenAI.Chat.Completions.ChatCompletion
|
||||
|
||||
logger.info('Successfully processed chat completion')
|
||||
return response
|
||||
return {
|
||||
provider,
|
||||
modelId,
|
||||
response
|
||||
}
|
||||
} catch (error: any) {
|
||||
logger.error('Error processing chat completion:', error)
|
||||
throw error
|
||||
}
|
||||
}
|
||||
|
||||
async *processStreamingCompletion(
|
||||
async processStreamingCompletion(
|
||||
request: ChatCompletionCreateParams
|
||||
): AsyncIterable<OpenAI.Chat.Completions.ChatCompletionChunk> {
|
||||
): Promise<{
|
||||
provider: Provider
|
||||
modelId: string
|
||||
stream: AsyncIterable<OpenAI.Chat.Completions.ChatCompletionChunk>
|
||||
}> {
|
||||
try {
|
||||
logger.info('Processing streaming chat completion request:', {
|
||||
model: request.model,
|
||||
messageCount: request.messages.length
|
||||
})
|
||||
|
||||
// Validate request
|
||||
const validation = this.validateRequest(request)
|
||||
if (!validation.isValid) {
|
||||
throw new Error(`Request validation failed: ${validation.errors.join(', ')}`)
|
||||
const preparation = await this.prepareRequest(request, true)
|
||||
if (preparation.status === 'validation_error') {
|
||||
throw new ChatCompletionValidationError(preparation.errors)
|
||||
}
|
||||
|
||||
// Get provider for the model
|
||||
const provider = await getProviderByModel(request.model!)
|
||||
if (!provider) {
|
||||
throw new Error(`Provider not found for model: ${request.model}`)
|
||||
if (preparation.status === 'model_error') {
|
||||
throw new ChatCompletionModelError(preparation.error)
|
||||
}
|
||||
|
||||
// Validate provider
|
||||
if (!validateProvider(provider)) {
|
||||
throw new Error(`Provider validation failed for: ${provider.id}`)
|
||||
}
|
||||
|
||||
// Extract model ID from the full model string
|
||||
const modelId = getRealProviderModel(request.model)
|
||||
|
||||
// Create OpenAI client for the provider
|
||||
const client = new OpenAI({
|
||||
baseURL: provider.apiHost,
|
||||
apiKey: provider.apiKey
|
||||
})
|
||||
|
||||
// Prepare streaming request
|
||||
const streamingRequest = {
|
||||
...request,
|
||||
model: modelId,
|
||||
stream: true as const
|
||||
}
|
||||
const { provider, modelId, client, providerRequest } = preparation
|
||||
|
||||
logger.debug('Sending streaming request to provider:', {
|
||||
provider: provider.id,
|
||||
@ -221,13 +226,17 @@ export class ChatCompletionService {
|
||||
apiHost: provider.apiHost
|
||||
})
|
||||
|
||||
const stream = await client.chat.completions.create(streamingRequest)
|
||||
const streamRequest = providerRequest as ChatCompletionCreateParamsStreaming
|
||||
const stream = (await client.chat.completions.create(streamRequest)) as AsyncIterable<
|
||||
OpenAI.Chat.Completions.ChatCompletionChunk
|
||||
>
|
||||
|
||||
for await (const chunk of stream) {
|
||||
yield chunk
|
||||
logger.info('Successfully started streaming chat completion')
|
||||
return {
|
||||
provider,
|
||||
modelId,
|
||||
stream
|
||||
}
|
||||
|
||||
logger.info('Successfully completed streaming chat completion')
|
||||
} catch (error: any) {
|
||||
logger.error('Error processing streaming chat completion:', error)
|
||||
throw error
|
||||
|
||||
106
src/main/apiServer/services/messages.ts
Normal file
106
src/main/apiServer/services/messages.ts
Normal file
@ -0,0 +1,106 @@
|
||||
import Anthropic from '@anthropic-ai/sdk'
|
||||
import { Message, MessageCreateParams, RawMessageStreamEvent } from '@anthropic-ai/sdk/resources'
|
||||
import { Provider } from '@types'
|
||||
|
||||
import { loggerService } from '../../services/LoggerService'
|
||||
|
||||
const logger = loggerService.withContext('MessagesService')
|
||||
|
||||
export interface ValidationResult {
|
||||
isValid: boolean
|
||||
errors: string[]
|
||||
}
|
||||
|
||||
export class MessagesService {
|
||||
// oxlint-disable-next-line no-unused-vars
|
||||
validateRequest(request: MessageCreateParams): ValidationResult {
|
||||
// TODO: Implement comprehensive request validation
|
||||
const errors: string[] = []
|
||||
|
||||
if (!request.model) {
|
||||
errors.push('Model is required')
|
||||
}
|
||||
|
||||
if (!request.max_tokens || request.max_tokens < 1) {
|
||||
errors.push('max_tokens is required and must be at least 1')
|
||||
}
|
||||
|
||||
if (!request.messages || !Array.isArray(request.messages) || request.messages.length === 0) {
|
||||
errors.push('messages is required and must be a non-empty array')
|
||||
}
|
||||
|
||||
return {
|
||||
isValid: errors.length === 0,
|
||||
errors
|
||||
}
|
||||
}
|
||||
|
||||
async processMessage(request: MessageCreateParams, provider: Provider): Promise<Message> {
|
||||
logger.info('Processing Anthropic message request:', {
|
||||
model: request.model,
|
||||
messageCount: request.messages.length,
|
||||
stream: request.stream,
|
||||
max_tokens: request.max_tokens
|
||||
})
|
||||
|
||||
// Create Anthropic client for the provider
|
||||
const client = new Anthropic({
|
||||
baseURL: provider.apiHost,
|
||||
apiKey: provider.apiKey
|
||||
})
|
||||
|
||||
// Prepare request with the actual model ID
|
||||
const anthropicRequest: MessageCreateParams = {
|
||||
...request,
|
||||
stream: false
|
||||
}
|
||||
|
||||
logger.debug('Sending request to Anthropic provider:', {
|
||||
provider: provider.id,
|
||||
apiHost: provider.apiHost
|
||||
})
|
||||
|
||||
const response = await client.messages.create(anthropicRequest)
|
||||
|
||||
logger.info('Successfully processed Anthropic message')
|
||||
return response
|
||||
}
|
||||
|
||||
async *processStreamingMessage(
|
||||
request: MessageCreateParams,
|
||||
provider: Provider
|
||||
): AsyncIterable<RawMessageStreamEvent> {
|
||||
logger.info('Processing streaming Anthropic message request:', {
|
||||
model: request.model,
|
||||
messageCount: request.messages.length
|
||||
})
|
||||
|
||||
// Create Anthropic client for the provider
|
||||
const client = new Anthropic({
|
||||
baseURL: provider.apiHost,
|
||||
apiKey: provider.apiKey
|
||||
})
|
||||
|
||||
// Prepare streaming request
|
||||
const streamingRequest: MessageCreateParams = {
|
||||
...request,
|
||||
stream: true
|
||||
}
|
||||
|
||||
logger.debug('Sending streaming request to Anthropic provider:', {
|
||||
provider: provider.id,
|
||||
apiHost: provider.apiHost
|
||||
})
|
||||
|
||||
const stream = client.messages.stream(streamingRequest)
|
||||
|
||||
for await (const chunk of stream) {
|
||||
yield chunk
|
||||
}
|
||||
|
||||
logger.info('Successfully completed streaming Anthropic message')
|
||||
}
|
||||
}
|
||||
|
||||
// Export singleton instance
|
||||
export const messagesService = new MessagesService()
|
||||
103
src/main/apiServer/services/models.ts
Normal file
103
src/main/apiServer/services/models.ts
Normal file
@ -0,0 +1,103 @@
|
||||
import {
|
||||
ApiModelsRequest,
|
||||
ApiModelsRequestSchema,
|
||||
ApiModelsResponse,
|
||||
OpenAICompatibleModel
|
||||
} from '../../../renderer/src/types/apiModels'
|
||||
import { loggerService } from '../../services/LoggerService'
|
||||
import { getAvailableProviders, listAllAvailableModels, transformModelToOpenAI } from '../utils'
|
||||
|
||||
const logger = loggerService.withContext('ModelsService')
|
||||
|
||||
// Re-export for backward compatibility
|
||||
export const ModelsFilterSchema = ApiModelsRequestSchema
|
||||
export type ModelsFilter = ApiModelsRequest
|
||||
|
||||
export class ModelsService {
|
||||
async getModels(filter?: ModelsFilter): Promise<ApiModelsResponse> {
|
||||
try {
|
||||
logger.info('Getting available models from providers', { filter })
|
||||
|
||||
const models = await listAllAvailableModels()
|
||||
const providers = await getAvailableProviders()
|
||||
|
||||
// Use Map to deduplicate models by their full ID (provider:model_id)
|
||||
const uniqueModels = new Map<string, OpenAICompatibleModel>()
|
||||
|
||||
for (const model of models) {
|
||||
const openAIModel = transformModelToOpenAI(model)
|
||||
const fullModelId = openAIModel.id // This is already in format "provider:model_id"
|
||||
|
||||
// Only add if not already present (first occurrence wins)
|
||||
if (!uniqueModels.has(fullModelId)) {
|
||||
uniqueModels.set(fullModelId, {
|
||||
...openAIModel,
|
||||
name: model.name
|
||||
})
|
||||
} else {
|
||||
logger.debug(`Skipping duplicate model: ${fullModelId}`)
|
||||
}
|
||||
}
|
||||
|
||||
let modelData = Array.from(uniqueModels.values())
|
||||
|
||||
// Apply filters
|
||||
if (filter?.provider) {
|
||||
const providerType = filter.provider
|
||||
modelData = modelData.filter((model) => {
|
||||
// Find the provider for this model and check its type
|
||||
const provider = providers.find((p) => p.id === model.provider)
|
||||
return provider && provider.type === providerType
|
||||
})
|
||||
logger.debug(`Filtered by provider type '${providerType}': ${modelData.length} models`)
|
||||
}
|
||||
|
||||
const total = modelData.length
|
||||
|
||||
// Apply pagination
|
||||
const offset = filter?.offset || 0
|
||||
const limit = filter?.limit
|
||||
|
||||
if (limit !== undefined) {
|
||||
modelData = modelData.slice(offset, offset + limit)
|
||||
logger.debug(
|
||||
`Applied pagination: offset=${offset}, limit=${limit}, showing ${modelData.length} of ${total} models`
|
||||
)
|
||||
} else if (offset > 0) {
|
||||
modelData = modelData.slice(offset)
|
||||
logger.debug(`Applied offset: offset=${offset}, showing ${modelData.length} of ${total} models`)
|
||||
}
|
||||
|
||||
logger.info(`Successfully retrieved ${modelData.length} models from ${models.length} total models`)
|
||||
|
||||
if (models.length > total) {
|
||||
logger.debug(`Filtered out ${models.length - total} models after deduplication and filtering`)
|
||||
}
|
||||
|
||||
const response: ApiModelsResponse = {
|
||||
object: 'list',
|
||||
data: modelData
|
||||
}
|
||||
|
||||
// Add pagination metadata if applicable
|
||||
if (filter?.limit !== undefined || filter?.offset !== undefined) {
|
||||
response.total = total
|
||||
response.offset = offset
|
||||
if (filter?.limit !== undefined) {
|
||||
response.limit = filter.limit
|
||||
}
|
||||
}
|
||||
|
||||
return response
|
||||
} catch (error: any) {
|
||||
logger.error('Error getting models:', error)
|
||||
return {
|
||||
object: 'list',
|
||||
data: []
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Export singleton instance
|
||||
export const modelsService = new ModelsService()
|
||||
@ -1,19 +1,9 @@
|
||||
import { loggerService } from '@main/services/LoggerService'
|
||||
import { reduxService } from '@main/services/ReduxService'
|
||||
import { Model, Provider } from '@types'
|
||||
import { Model, OpenAICompatibleModel, Provider } from '@types'
|
||||
|
||||
const logger = loggerService.withContext('ApiServerUtils')
|
||||
|
||||
// OpenAI compatible model format
|
||||
export interface OpenAICompatibleModel {
|
||||
id: string
|
||||
object: 'model'
|
||||
created: number
|
||||
owned_by: string
|
||||
provider?: string
|
||||
provider_model_id?: string
|
||||
}
|
||||
|
||||
export async function getAvailableProviders(): Promise<Provider[]> {
|
||||
try {
|
||||
// Wait for store to be ready before accessing providers
|
||||
@ -23,12 +13,14 @@ export async function getAvailableProviders(): Promise<Provider[]> {
|
||||
return []
|
||||
}
|
||||
|
||||
// Only support OpenAI type providers for API server
|
||||
const openAIProviders = providers.filter((p: Provider) => p.enabled && p.type === 'openai')
|
||||
// Support OpenAI and Anthropic type providers for API server
|
||||
const supportedProviders = providers.filter(
|
||||
(p: Provider) => p.enabled && (p.type === 'openai' || p.type === 'anthropic')
|
||||
)
|
||||
|
||||
logger.info(`Filtered to ${openAIProviders.length} OpenAI providers from ${providers.length} total providers`)
|
||||
logger.info(`Filtered to ${supportedProviders.length} supported providers from ${providers.length} total providers`)
|
||||
|
||||
return openAIProviders
|
||||
return supportedProviders
|
||||
} catch (error: any) {
|
||||
logger.error('Failed to get providers from Redux store:', error)
|
||||
return []
|
||||
@ -185,6 +177,7 @@ export function transformModelToOpenAI(model: Model): OpenAICompatibleModel {
|
||||
return {
|
||||
id: `${model.provider}:${model.id}`,
|
||||
object: 'model',
|
||||
name: model.name,
|
||||
created: Math.floor(Date.now() / 1000),
|
||||
owned_by: model.owned_by || model.provider,
|
||||
provider: model.provider,
|
||||
@ -215,10 +208,10 @@ export function validateProvider(provider: Provider): boolean {
|
||||
return false
|
||||
}
|
||||
|
||||
// Only support OpenAI type providers
|
||||
if (provider.type !== 'openai') {
|
||||
// Support OpenAI and Anthropic type providers
|
||||
if (provider.type !== 'openai' && provider.type !== 'anthropic') {
|
||||
logger.debug(
|
||||
`Provider type '${provider.type}' not supported, only 'openai' type is currently supported: ${provider.id}`
|
||||
`Provider type '${provider.type}' not supported, only 'openai' and 'anthropic' types are currently supported: ${provider.id}`
|
||||
)
|
||||
return false
|
||||
}
|
||||
|
||||
33
src/renderer/src/types/apiModels.ts
Normal file
33
src/renderer/src/types/apiModels.ts
Normal file
@ -0,0 +1,33 @@
|
||||
import { z } from 'zod'
|
||||
|
||||
// Request schema for /v1/models
|
||||
export const ApiModelsRequestSchema = z.object({
|
||||
provider: z.enum(['openai', 'anthropic']).optional(),
|
||||
offset: z.coerce.number().min(0).default(0).optional(),
|
||||
limit: z.coerce.number().min(1).optional()
|
||||
})
|
||||
|
||||
// OpenAI compatible model schema
|
||||
export const OpenAICompatibleModelSchema = z.object({
|
||||
id: z.string(),
|
||||
object: z.literal('model'),
|
||||
created: z.number(),
|
||||
name: z.string(),
|
||||
owned_by: z.string(),
|
||||
provider: z.string().optional(),
|
||||
provider_model_id: z.string().optional()
|
||||
})
|
||||
|
||||
// Response schema for /v1/models
|
||||
export const ApiModelsResponseSchema = z.object({
|
||||
object: z.literal('list'),
|
||||
data: z.array(OpenAICompatibleModelSchema),
|
||||
total: z.number().optional(),
|
||||
offset: z.number().optional(),
|
||||
limit: z.number().optional()
|
||||
})
|
||||
|
||||
// Inferred TypeScript types
|
||||
export type ApiModelsRequest = z.infer<typeof ApiModelsRequestSchema>
|
||||
export type OpenAICompatibleModel = z.infer<typeof OpenAICompatibleModelSchema>
|
||||
export type ApiModelsResponse = z.infer<typeof ApiModelsResponseSchema>
|
||||
@ -16,6 +16,7 @@ import type { Message } from './newMessage'
|
||||
import type { BaseTool, MCPTool } from './tool'
|
||||
|
||||
export * from './agent'
|
||||
export * from './apiModels'
|
||||
export * from './knowledge'
|
||||
export * from './mcp'
|
||||
export * from './notification'
|
||||
|
||||
79
tests/apis/chat.http
Normal file
79
tests/apis/chat.http
Normal file
@ -0,0 +1,79 @@
|
||||
@host=http://localhost:23333
|
||||
@token=cs-sk-af798ed4-7cf5-4fd7-ae4b-df203b164194
|
||||
@agent_id=agent_1758092281575_tn9dxio9k
|
||||
|
||||
|
||||
### List All Models
|
||||
GET {{host}}/v1/models
|
||||
Authorization: Bearer {{token}}
|
||||
|
||||
|
||||
### List Models With Filters
|
||||
GET {{host}}/v1/models?provider=anthropic&limit=5
|
||||
Authorization: Bearer {{token}}
|
||||
|
||||
|
||||
### OpenAI Chat Completion
|
||||
POST {{host}}/v1/chat/completions
|
||||
Authorization: Bearer {{token}}
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"model": "tokenflux:openai/gpt-5-nano",
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Explain the theory of relativity in simple terms."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
### OpenAI Chat Completion with streaming
|
||||
POST {{host}}/v1/chat/completions
|
||||
Authorization: Bearer {{token}}
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"model": "tokenflux:openai/gpt-5-nano",
|
||||
"stream": true,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Explain the theory of relativity in simple terms."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
### Anthropic Chat Message
|
||||
POST {{host}}/v1/messages
|
||||
Authorization: Bearer {{token}}
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"model": "anthropic:claude-sonnet-4-20250514",
|
||||
"stream": false,
|
||||
"max_tokens": 1024,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Explain the theory of relativity in simple terms."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
### Anthropic Chat Message with streaming
|
||||
POST {{host}}/v1/messages
|
||||
Authorization: Bearer {{token}}
|
||||
Content-Type: application/json
|
||||
|
||||
{
|
||||
"model": "anthropic:claude-sonnet-4-20250514",
|
||||
"stream": true,
|
||||
"max_tokens": 1024,
|
||||
"messages": [
|
||||
{
|
||||
"role": "user",
|
||||
"content": "Explain the theory of relativity in simple terms."
|
||||
}
|
||||
]
|
||||
}
|
||||
Loading…
Reference in New Issue
Block a user