Merge branch 'feat/agents-new' of github.com:CherryHQ/cherry-studio into feat/agents-new

This commit is contained in:
icarus 2025-09-19 17:46:32 +08:00
commit 0cce8220ce
11 changed files with 987 additions and 296 deletions

View File

@ -9,6 +9,7 @@ import { setupOpenAPIDocumentation } from './middleware/openapi'
import { agentsRoutes } from './routes/agents'
import { chatRoutes } from './routes/chat'
import { mcpRoutes } from './routes/mcp'
import { messagesRoutes } from './routes/messages'
import { modelsRoutes } from './routes/models'
const logger = loggerService.withContext('ApiServer')
@ -114,6 +115,7 @@ apiRouter.use(express.json())
// Mount routes
apiRouter.use('/chat', chatRoutes)
apiRouter.use('/mcps', mcpRoutes)
apiRouter.use('/messages', messagesRoutes)
apiRouter.use('/models', modelsRoutes)
apiRouter.use('/agents', agentsRoutes)
app.use('/v1', apiRouter)

View File

@ -1,15 +1,105 @@
import express, { Request, Response } from 'express'
import OpenAI from 'openai'
import { ChatCompletionCreateParams } from 'openai/resources'
import { loggerService } from '../../services/LoggerService'
import { chatCompletionService } from '../services/chat-completion'
import { validateModelId } from '../utils'
import {
ChatCompletionModelError,
chatCompletionService,
ChatCompletionValidationError
} from '../services/chat-completion'
const logger = loggerService.withContext('ApiServerChatRoutes')
const router = express.Router()
interface ErrorResponseBody {
error: {
message: string
type: string
code: string
}
}
const mapChatCompletionError = (error: unknown): { status: number; body: ErrorResponseBody } => {
if (error instanceof ChatCompletionValidationError) {
logger.warn('Chat completion validation error:', {
errors: error.errors
})
return {
status: 400,
body: {
error: {
message: error.errors.join('; '),
type: 'invalid_request_error',
code: 'validation_failed'
}
}
}
}
if (error instanceof ChatCompletionModelError) {
logger.warn('Chat completion model error:', error.error)
return {
status: 400,
body: {
error: {
message: error.error.message,
type: 'invalid_request_error',
code: error.error.code
}
}
}
}
if (error instanceof Error) {
let statusCode = 500
let errorType = 'server_error'
let errorCode = 'internal_error'
if (error.message.includes('API key') || error.message.includes('authentication')) {
statusCode = 401
errorType = 'authentication_error'
errorCode = 'invalid_api_key'
} else if (error.message.includes('rate limit') || error.message.includes('quota')) {
statusCode = 429
errorType = 'rate_limit_error'
errorCode = 'rate_limit_exceeded'
} else if (error.message.includes('timeout') || error.message.includes('connection')) {
statusCode = 502
errorType = 'server_error'
errorCode = 'upstream_error'
}
logger.error('Chat completion error:', { error })
return {
status: statusCode,
body: {
error: {
message: error.message || 'Internal server error',
type: errorType,
code: errorCode
}
}
}
}
logger.error('Chat completion unknown error:', { error })
return {
status: 500,
body: {
error: {
message: 'Internal server error',
type: 'server_error',
code: 'internal_error'
}
}
}
}
/**
* @swagger
* /v1/chat/completions:
@ -60,7 +150,7 @@ const router = express.Router()
* type: integer
* total_tokens:
* type: integer
* text/plain:
* text/event-stream:
* schema:
* type: string
* description: Server-sent events stream (when stream=true)
@ -110,63 +200,22 @@ router.post('/completions', async (req: Request, res: Response) => {
temperature: request.temperature
})
// Validate request
const validation = chatCompletionService.validateRequest(request)
if (!validation.isValid) {
return res.status(400).json({
error: {
message: validation.errors.join('; '),
type: 'invalid_request_error',
code: 'validation_failed'
}
})
}
const isStreaming = !!request.stream
// Validate model ID and get provider
const modelValidation = await validateModelId(request.model)
if (!modelValidation.valid) {
const error = modelValidation.error!
logger.warn(`Model validation failed for '${request.model}':`, error)
return res.status(400).json({
error: {
message: error.message,
type: 'invalid_request_error',
code: error.code
}
})
}
if (isStreaming) {
const { stream } = await chatCompletionService.processStreamingCompletion(request)
const provider = modelValidation.provider!
const modelId = modelValidation.modelId!
logger.info('Model validation successful:', {
provider: provider.id,
providerType: provider.type,
modelId: modelId,
fullModelId: request.model
})
// Create OpenAI client
const client = new OpenAI({
baseURL: provider.apiHost,
apiKey: provider.apiKey
})
request.model = modelId
// Handle streaming
if (request.stream) {
const streamResponse = await client.chat.completions.create(request)
res.setHeader('Content-Type', 'text/plain; charset=utf-8')
res.setHeader('Cache-Control', 'no-cache')
res.setHeader('Content-Type', 'text/event-stream; charset=utf-8')
res.setHeader('Cache-Control', 'no-cache, no-transform')
res.setHeader('Connection', 'keep-alive')
res.setHeader('X-Accel-Buffering', 'no')
res.flushHeaders()
try {
for await (const chunk of streamResponse as any) {
for await (const chunk of stream) {
res.write(`data: ${JSON.stringify(chunk)}\n\n`)
}
res.write('data: [DONE]\n\n')
res.end()
} catch (streamError: any) {
logger.error('Stream error:', streamError)
res.write(
@ -178,47 +227,17 @@ router.post('/completions', async (req: Request, res: Response) => {
}
})}\n\n`
)
} finally {
res.end()
}
return
}
// Handle non-streaming
const response = await client.chat.completions.create(request)
const { response } = await chatCompletionService.processCompletion(request)
return res.json(response)
} catch (error: any) {
logger.error('Chat completion error:', error)
let statusCode = 500
let errorType = 'server_error'
let errorCode = 'internal_error'
let errorMessage = 'Internal server error'
if (error instanceof Error) {
errorMessage = error.message
if (error.message.includes('API key') || error.message.includes('authentication')) {
statusCode = 401
errorType = 'authentication_error'
errorCode = 'invalid_api_key'
} else if (error.message.includes('rate limit') || error.message.includes('quota')) {
statusCode = 429
errorType = 'rate_limit_error'
errorCode = 'rate_limit_exceeded'
} else if (error.message.includes('timeout') || error.message.includes('connection')) {
statusCode = 502
errorType = 'server_error'
errorCode = 'upstream_error'
}
}
return res.status(statusCode).json({
error: {
message: errorMessage,
type: errorType,
code: errorCode
}
})
} catch (error: unknown) {
const { status, body } = mapChatCompletionError(error)
return res.status(status).json(body)
}
})

View File

@ -0,0 +1,290 @@
import { MessageCreateParams } from '@anthropic-ai/sdk/resources'
import express, { Request, Response } from 'express'
import { loggerService } from '../../services/LoggerService'
import { messagesService } from '../services/messages'
import { validateModelId } from '../utils'
const logger = loggerService.withContext('ApiServerMessagesRoutes')
const router = express.Router()
/**
* @swagger
* /v1/messages:
* post:
* summary: Create message
* description: Create a message response using Anthropic's API format
* tags: [Messages]
* requestBody:
* required: true
* content:
* application/json:
* schema:
* type: object
* required:
* - model
* - max_tokens
* - messages
* properties:
* model:
* type: string
* description: Model ID in format "provider:model_id"
* example: "my-anthropic:claude-3-5-sonnet-20241022"
* max_tokens:
* type: integer
* minimum: 1
* description: Maximum number of tokens to generate
* example: 1024
* messages:
* type: array
* items:
* type: object
* properties:
* role:
* type: string
* enum: [user, assistant]
* content:
* oneOf:
* - type: string
* - type: array
* system:
* type: string
* description: System message
* temperature:
* type: number
* minimum: 0
* maximum: 1
* description: Sampling temperature
* top_p:
* type: number
* minimum: 0
* maximum: 1
* description: Nucleus sampling
* top_k:
* type: integer
* minimum: 0
* description: Top-k sampling
* stream:
* type: boolean
* description: Whether to stream the response
* tools:
* type: array
* description: Available tools for the model
* responses:
* 200:
* description: Message response
* content:
* application/json:
* schema:
* type: object
* properties:
* id:
* type: string
* type:
* type: string
* example: message
* role:
* type: string
* example: assistant
* content:
* type: array
* items:
* type: object
* model:
* type: string
* stop_reason:
* type: string
* stop_sequence:
* type: string
* usage:
* type: object
* properties:
* input_tokens:
* type: integer
* output_tokens:
* type: integer
* text/event-stream:
* schema:
* type: string
* description: Server-sent events stream (when stream=true)
* 400:
* description: Bad request
* content:
* application/json:
* schema:
* type: object
* properties:
* type:
* type: string
* example: error
* error:
* type: object
* properties:
* type:
* type: string
* message:
* type: string
* 401:
* description: Unauthorized
* 429:
* description: Rate limit exceeded
* 500:
* description: Internal server error
*/
router.post('/', async (req: Request, res: Response) => {
try {
const request: MessageCreateParams = req.body
if (!request) {
return res.status(400).json({
type: 'error',
error: {
type: 'invalid_request_error',
message: 'Request body is required'
}
})
}
logger.info('Anthropic message request:', {
model: request.model,
messageCount: request.messages?.length || 0,
stream: request.stream,
max_tokens: request.max_tokens,
temperature: request.temperature
})
// Validate model ID and get provider
const modelValidation = await validateModelId(request.model)
if (!modelValidation.valid) {
const error = modelValidation.error!
logger.warn(`Model validation failed for '${request.model}':`, error)
return res.status(400).json({
type: 'error',
error: {
type: 'invalid_request_error',
message: error.message
}
})
}
const provider = modelValidation.provider!
// Ensure provider is Anthropic type
if (provider.type !== 'anthropic') {
return res.status(400).json({
type: 'error',
error: {
type: 'invalid_request_error',
message: `Invalid provider type '${provider.type}' for messages endpoint. Expected 'anthropic' provider.`
}
})
}
const modelId = modelValidation.modelId!
request.model = modelId
logger.info('Model validation successful:', {
provider: provider.id,
providerType: provider.type,
modelId: modelId,
fullModelId: request.model
})
// Validate request
const validation = messagesService.validateRequest(request)
if (!validation.isValid) {
return res.status(400).json({
type: 'error',
error: {
type: 'invalid_request_error',
message: validation.errors.join('; ')
}
})
}
// Handle streaming
if (request.stream) {
res.setHeader('Content-Type', 'text/event-stream; charset=utf-8')
res.setHeader('Cache-Control', 'no-cache, no-transform')
res.setHeader('Connection', 'keep-alive')
res.setHeader('X-Accel-Buffering', 'no')
res.flushHeaders()
try {
for await (const chunk of messagesService.processStreamingMessage(request, provider)) {
res.write(`data: ${JSON.stringify(chunk)}\n\n`)
}
res.write('data: [DONE]\n\n')
} catch (streamError: any) {
logger.error('Stream error:', streamError)
res.write(
`data: ${JSON.stringify({
type: 'error',
error: {
type: 'api_error',
message: 'Stream processing error'
}
})}\n\n`
)
} finally {
res.end()
}
return
}
// Handle non-streaming
const response = await messagesService.processMessage(request, provider)
return res.json(response)
} catch (error: any) {
logger.error('Anthropic message error:', error)
let statusCode = 500
let errorType = 'api_error'
let errorMessage = 'Internal server error'
const anthropicStatus = typeof error?.status === 'number' ? error.status : undefined
const anthropicError = error?.error
if (anthropicStatus) {
statusCode = anthropicStatus
}
if (anthropicError?.type) {
errorType = anthropicError.type
}
if (anthropicError?.message) {
errorMessage = anthropicError.message
} else if (error instanceof Error && error.message) {
errorMessage = error.message
}
if (!anthropicStatus && error instanceof Error) {
if (error.message.includes('API key') || error.message.includes('authentication')) {
statusCode = 401
errorType = 'authentication_error'
} else if (error.message.includes('rate limit') || error.message.includes('quota')) {
statusCode = 429
errorType = 'rate_limit_error'
} else if (error.message.includes('timeout') || error.message.includes('connection')) {
statusCode = 502
errorType = 'api_error'
} else if (error.message.includes('validation') || error.message.includes('invalid')) {
statusCode = 400
errorType = 'invalid_request_error'
}
}
return res.status(statusCode).json({
type: 'error',
error: {
type: errorType,
message: errorMessage,
requestId: error?.request_id
}
})
}
})
export { router as messagesRoutes }

View File

@ -1,73 +1,129 @@
import express, { Request, Response } from 'express'
import { loggerService } from '../../services/LoggerService'
import { chatCompletionService } from '../services/chat-completion'
import { ModelsFilterSchema, modelsService } from '../services/models'
const logger = loggerService.withContext('ApiServerModelsRoutes')
const router = express.Router()
const router = express
.Router()
/**
* @swagger
* /v1/models:
* get:
* summary: List available models
* description: Returns a list of available AI models from all configured providers
* tags: [Models]
* responses:
* 200:
* description: List of available models
* content:
* application/json:
* schema:
* type: object
* properties:
* object:
* type: string
* example: list
* data:
* type: array
* items:
* $ref: '#/components/schemas/Model'
* 503:
* description: Service unavailable
* content:
* application/json:
* schema:
* $ref: '#/components/schemas/Error'
*/
router.get('/', async (_req: Request, res: Response) => {
try {
logger.info('Models list request received')
/**
* @swagger
* /v1/models:
* get:
* summary: List available models
* description: Returns a list of available AI models from all configured providers with optional filtering
* tags: [Models]
* parameters:
* - in: query
* name: provider
* schema:
* type: string
* enum: [openai, anthropic]
* description: Filter models by provider type
* - in: query
* name: offset
* schema:
* type: integer
* minimum: 0
* default: 0
* description: Pagination offset
* - in: query
* name: limit
* schema:
* type: integer
* minimum: 1
* description: Maximum number of models to return
* responses:
* 200:
* description: List of available models
* content:
* application/json:
* schema:
* type: object
* properties:
* object:
* type: string
* example: list
* data:
* type: array
* items:
* $ref: '#/components/schemas/Model'
* total:
* type: integer
* description: Total number of models (when using pagination)
* offset:
* type: integer
* description: Current offset (when using pagination)
* limit:
* type: integer
* description: Current limit (when using pagination)
* 400:
* description: Invalid query parameters
* content:
* application/json:
* schema:
* $ref: '#/components/schemas/Error'
* 503:
* description: Service unavailable
* content:
* application/json:
* schema:
* $ref: '#/components/schemas/Error'
*/
.get('/', async (req: Request, res: Response) => {
try {
logger.info('Models list request received', { query: req.query })
const models = await chatCompletionService.getModels()
// Validate query parameters using Zod schema
const filterResult = ModelsFilterSchema.safeParse(req.query)
if (models.length === 0) {
logger.warn(
'No models available from providers. This may be because no OpenAI providers are configured or enabled.'
)
}
logger.info(`Returning ${models.length} models (OpenAI providers only)`)
logger.debug(
'Model IDs:',
models.map((m) => m.id)
)
return res.json({
object: 'list',
data: models
})
} catch (error: any) {
logger.error('Error fetching models:', error)
return res.status(503).json({
error: {
message: 'Failed to retrieve models from available providers',
type: 'service_unavailable',
code: 'models_unavailable'
if (!filterResult.success) {
logger.warn('Invalid query parameters:', filterResult.error.issues)
return res.status(400).json({
error: {
message: 'Invalid query parameters',
type: 'invalid_request_error',
code: 'invalid_parameters',
details: filterResult.error.issues.map((issue) => ({
field: issue.path.join('.'),
message: issue.message
}))
}
})
}
})
}
})
const filter = filterResult.data
const response = await modelsService.getModels(filter)
if (response.data.length === 0) {
logger.warn(
'No models available from providers. This may be because no OpenAI/Anthropic providers are configured or enabled.',
{ filter }
)
}
logger.info(`Returning ${response.data.length} models`, {
filter,
total: response.total
})
logger.debug(
'Model IDs:',
response.data.map((m) => m.id)
)
return res.json(response)
} catch (error: any) {
logger.error('Error fetching models:', error)
return res.status(503).json({
error: {
message: 'Failed to retrieve models from available providers',
type: 'service_unavailable',
code: 'models_unavailable'
}
})
}
})
export { router as modelsRoutes }

View File

@ -1,83 +1,131 @@
import { Provider } from '@types'
import OpenAI from 'openai'
import { ChatCompletionCreateParams } from 'openai/resources'
import { ChatCompletionCreateParams, ChatCompletionCreateParamsStreaming } from 'openai/resources'
import { loggerService } from '../../services/LoggerService'
import {
getProviderByModel,
getRealProviderModel,
listAllAvailableModels,
OpenAICompatibleModel,
transformModelToOpenAI,
validateProvider
} from '../utils'
import { ModelValidationError, validateModelId } from '../utils'
const logger = loggerService.withContext('ChatCompletionService')
export interface ModelData extends OpenAICompatibleModel {
provider_id: string
model_id: string
name: string
}
export interface ValidationResult {
isValid: boolean
errors: string[]
}
export class ChatCompletionValidationError extends Error {
constructor(public readonly errors: string[]) {
super(`Request validation failed: ${errors.join('; ')}`)
this.name = 'ChatCompletionValidationError'
}
}
export class ChatCompletionModelError extends Error {
constructor(public readonly error: ModelValidationError) {
super(`Model validation failed: ${error.message}`)
this.name = 'ChatCompletionModelError'
}
}
export type PrepareRequestResult =
| { status: 'validation_error'; errors: string[] }
| { status: 'model_error'; error: ModelValidationError }
| {
status: 'ok'
provider: Provider
modelId: string
client: OpenAI
providerRequest: ChatCompletionCreateParams
}
export class ChatCompletionService {
async getModels(): Promise<ModelData[]> {
try {
logger.info('Getting available models from providers')
async resolveProviderContext(model: string): Promise<
| { ok: false; error: ModelValidationError }
| { ok: true; provider: Provider; modelId: string; client: OpenAI }
> {
const modelValidation = await validateModelId(model)
if (!modelValidation.valid) {
return {
ok: false,
error: modelValidation.error!
}
}
const models = await listAllAvailableModels()
const provider = modelValidation.provider!
// Use Map to deduplicate models by their full ID (provider:model_id)
const uniqueModels = new Map<string, ModelData>()
for (const model of models) {
const openAIModel = transformModelToOpenAI(model)
const fullModelId = openAIModel.id // This is already in format "provider:model_id"
// Only add if not already present (first occurrence wins)
if (!uniqueModels.has(fullModelId)) {
uniqueModels.set(fullModelId, {
...openAIModel,
provider_id: model.provider,
model_id: model.id,
name: model.name
})
} else {
logger.debug(`Skipping duplicate model: ${fullModelId}`)
if (provider.type !== 'openai') {
return {
ok: false,
error: {
type: 'unsupported_provider_type',
message: `Provider '${provider.id}' of type '${provider.type}' is not supported for OpenAI chat completions`,
code: 'unsupported_provider_type'
}
}
}
const modelData = Array.from(uniqueModels.values())
const modelId = modelValidation.modelId!
logger.info(`Successfully retrieved ${modelData.length} unique models from ${models.length} total models`)
const client = new OpenAI({
baseURL: provider.apiHost,
apiKey: provider.apiKey
})
if (models.length > modelData.length) {
logger.debug(`Filtered out ${models.length - modelData.length} duplicate models`)
return {
ok: true,
provider,
modelId,
client
}
}
async prepareRequest(request: ChatCompletionCreateParams, stream: boolean): Promise<PrepareRequestResult> {
const requestValidation = this.validateRequest(request)
if (!requestValidation.isValid) {
return {
status: 'validation_error',
errors: requestValidation.errors
}
}
return modelData
} catch (error: any) {
logger.error('Error getting models:', error)
return []
const providerContext = await this.resolveProviderContext(request.model!)
if (!providerContext.ok) {
return {
status: 'model_error',
error: providerContext.error
}
}
const { provider, modelId, client } = providerContext
logger.info('Model validation successful:', {
provider: provider.id,
providerType: provider.type,
modelId,
fullModelId: request.model
})
return {
status: 'ok',
provider,
modelId,
client,
providerRequest: stream
? {
...request,
model: modelId,
stream: true as const
}
: {
...request,
model: modelId,
stream: false as const
}
}
}
validateRequest(request: ChatCompletionCreateParams): ValidationResult {
const errors: string[] = []
// Validate model
if (!request.model) {
errors.push('Model is required')
} else if (typeof request.model !== 'string') {
errors.push('Model must be a string')
} else if (!request.model.includes(':')) {
errors.push('Model must be in format "provider:model_id"')
}
// Validate messages
if (!request.messages) {
errors.push('Messages array is required')
@ -98,17 +146,6 @@ export class ChatCompletionService {
}
// Validate optional parameters
if (request.temperature !== undefined) {
if (typeof request.temperature !== 'number' || request.temperature < 0 || request.temperature > 2) {
errors.push('Temperature must be a number between 0 and 2')
}
}
if (request.max_tokens !== undefined) {
if (typeof request.max_tokens !== 'number' || request.max_tokens < 1) {
errors.push('max_tokens must be a positive number')
}
}
return {
isValid: errors.length === 0,
@ -116,7 +153,11 @@ export class ChatCompletionService {
}
}
async processCompletion(request: ChatCompletionCreateParams): Promise<OpenAI.Chat.Completions.ChatCompletion> {
async processCompletion(request: ChatCompletionCreateParams): Promise<{
provider: Provider
modelId: string
response: OpenAI.Chat.Completions.ChatCompletion
}> {
try {
logger.info('Processing chat completion request:', {
model: request.model,
@ -124,38 +165,16 @@ export class ChatCompletionService {
stream: request.stream
})
// Validate request
const validation = this.validateRequest(request)
if (!validation.isValid) {
throw new Error(`Request validation failed: ${validation.errors.join(', ')}`)
const preparation = await this.prepareRequest(request, false)
if (preparation.status === 'validation_error') {
throw new ChatCompletionValidationError(preparation.errors)
}
// Get provider for the model
const provider = await getProviderByModel(request.model!)
if (!provider) {
throw new Error(`Provider not found for model: ${request.model}`)
if (preparation.status === 'model_error') {
throw new ChatCompletionModelError(preparation.error)
}
// Validate provider
if (!validateProvider(provider)) {
throw new Error(`Provider validation failed for: ${provider.id}`)
}
// Extract model ID from the full model string
const modelId = getRealProviderModel(request.model)
// Create OpenAI client for the provider
const client = new OpenAI({
baseURL: provider.apiHost,
apiKey: provider.apiKey
})
// Prepare request with the actual model ID
const providerRequest = {
...request,
model: modelId,
stream: false
}
const { provider, modelId, client, providerRequest } = preparation
logger.debug('Sending request to provider:', {
provider: provider.id,
@ -166,54 +185,40 @@ export class ChatCompletionService {
const response = (await client.chat.completions.create(providerRequest)) as OpenAI.Chat.Completions.ChatCompletion
logger.info('Successfully processed chat completion')
return response
return {
provider,
modelId,
response
}
} catch (error: any) {
logger.error('Error processing chat completion:', error)
throw error
}
}
async *processStreamingCompletion(
async processStreamingCompletion(
request: ChatCompletionCreateParams
): AsyncIterable<OpenAI.Chat.Completions.ChatCompletionChunk> {
): Promise<{
provider: Provider
modelId: string
stream: AsyncIterable<OpenAI.Chat.Completions.ChatCompletionChunk>
}> {
try {
logger.info('Processing streaming chat completion request:', {
model: request.model,
messageCount: request.messages.length
})
// Validate request
const validation = this.validateRequest(request)
if (!validation.isValid) {
throw new Error(`Request validation failed: ${validation.errors.join(', ')}`)
const preparation = await this.prepareRequest(request, true)
if (preparation.status === 'validation_error') {
throw new ChatCompletionValidationError(preparation.errors)
}
// Get provider for the model
const provider = await getProviderByModel(request.model!)
if (!provider) {
throw new Error(`Provider not found for model: ${request.model}`)
if (preparation.status === 'model_error') {
throw new ChatCompletionModelError(preparation.error)
}
// Validate provider
if (!validateProvider(provider)) {
throw new Error(`Provider validation failed for: ${provider.id}`)
}
// Extract model ID from the full model string
const modelId = getRealProviderModel(request.model)
// Create OpenAI client for the provider
const client = new OpenAI({
baseURL: provider.apiHost,
apiKey: provider.apiKey
})
// Prepare streaming request
const streamingRequest = {
...request,
model: modelId,
stream: true as const
}
const { provider, modelId, client, providerRequest } = preparation
logger.debug('Sending streaming request to provider:', {
provider: provider.id,
@ -221,13 +226,17 @@ export class ChatCompletionService {
apiHost: provider.apiHost
})
const stream = await client.chat.completions.create(streamingRequest)
const streamRequest = providerRequest as ChatCompletionCreateParamsStreaming
const stream = (await client.chat.completions.create(streamRequest)) as AsyncIterable<
OpenAI.Chat.Completions.ChatCompletionChunk
>
for await (const chunk of stream) {
yield chunk
logger.info('Successfully started streaming chat completion')
return {
provider,
modelId,
stream
}
logger.info('Successfully completed streaming chat completion')
} catch (error: any) {
logger.error('Error processing streaming chat completion:', error)
throw error

View File

@ -0,0 +1,106 @@
import Anthropic from '@anthropic-ai/sdk'
import { Message, MessageCreateParams, RawMessageStreamEvent } from '@anthropic-ai/sdk/resources'
import { Provider } from '@types'
import { loggerService } from '../../services/LoggerService'
const logger = loggerService.withContext('MessagesService')
export interface ValidationResult {
isValid: boolean
errors: string[]
}
export class MessagesService {
// oxlint-disable-next-line no-unused-vars
validateRequest(request: MessageCreateParams): ValidationResult {
// TODO: Implement comprehensive request validation
const errors: string[] = []
if (!request.model) {
errors.push('Model is required')
}
if (!request.max_tokens || request.max_tokens < 1) {
errors.push('max_tokens is required and must be at least 1')
}
if (!request.messages || !Array.isArray(request.messages) || request.messages.length === 0) {
errors.push('messages is required and must be a non-empty array')
}
return {
isValid: errors.length === 0,
errors
}
}
async processMessage(request: MessageCreateParams, provider: Provider): Promise<Message> {
logger.info('Processing Anthropic message request:', {
model: request.model,
messageCount: request.messages.length,
stream: request.stream,
max_tokens: request.max_tokens
})
// Create Anthropic client for the provider
const client = new Anthropic({
baseURL: provider.apiHost,
apiKey: provider.apiKey
})
// Prepare request with the actual model ID
const anthropicRequest: MessageCreateParams = {
...request,
stream: false
}
logger.debug('Sending request to Anthropic provider:', {
provider: provider.id,
apiHost: provider.apiHost
})
const response = await client.messages.create(anthropicRequest)
logger.info('Successfully processed Anthropic message')
return response
}
async *processStreamingMessage(
request: MessageCreateParams,
provider: Provider
): AsyncIterable<RawMessageStreamEvent> {
logger.info('Processing streaming Anthropic message request:', {
model: request.model,
messageCount: request.messages.length
})
// Create Anthropic client for the provider
const client = new Anthropic({
baseURL: provider.apiHost,
apiKey: provider.apiKey
})
// Prepare streaming request
const streamingRequest: MessageCreateParams = {
...request,
stream: true
}
logger.debug('Sending streaming request to Anthropic provider:', {
provider: provider.id,
apiHost: provider.apiHost
})
const stream = client.messages.stream(streamingRequest)
for await (const chunk of stream) {
yield chunk
}
logger.info('Successfully completed streaming Anthropic message')
}
}
// Export singleton instance
export const messagesService = new MessagesService()

View File

@ -0,0 +1,103 @@
import {
ApiModelsRequest,
ApiModelsRequestSchema,
ApiModelsResponse,
OpenAICompatibleModel
} from '../../../renderer/src/types/apiModels'
import { loggerService } from '../../services/LoggerService'
import { getAvailableProviders, listAllAvailableModels, transformModelToOpenAI } from '../utils'
const logger = loggerService.withContext('ModelsService')
// Re-export for backward compatibility
export const ModelsFilterSchema = ApiModelsRequestSchema
export type ModelsFilter = ApiModelsRequest
export class ModelsService {
async getModels(filter?: ModelsFilter): Promise<ApiModelsResponse> {
try {
logger.info('Getting available models from providers', { filter })
const models = await listAllAvailableModels()
const providers = await getAvailableProviders()
// Use Map to deduplicate models by their full ID (provider:model_id)
const uniqueModels = new Map<string, OpenAICompatibleModel>()
for (const model of models) {
const openAIModel = transformModelToOpenAI(model)
const fullModelId = openAIModel.id // This is already in format "provider:model_id"
// Only add if not already present (first occurrence wins)
if (!uniqueModels.has(fullModelId)) {
uniqueModels.set(fullModelId, {
...openAIModel,
name: model.name
})
} else {
logger.debug(`Skipping duplicate model: ${fullModelId}`)
}
}
let modelData = Array.from(uniqueModels.values())
// Apply filters
if (filter?.provider) {
const providerType = filter.provider
modelData = modelData.filter((model) => {
// Find the provider for this model and check its type
const provider = providers.find((p) => p.id === model.provider)
return provider && provider.type === providerType
})
logger.debug(`Filtered by provider type '${providerType}': ${modelData.length} models`)
}
const total = modelData.length
// Apply pagination
const offset = filter?.offset || 0
const limit = filter?.limit
if (limit !== undefined) {
modelData = modelData.slice(offset, offset + limit)
logger.debug(
`Applied pagination: offset=${offset}, limit=${limit}, showing ${modelData.length} of ${total} models`
)
} else if (offset > 0) {
modelData = modelData.slice(offset)
logger.debug(`Applied offset: offset=${offset}, showing ${modelData.length} of ${total} models`)
}
logger.info(`Successfully retrieved ${modelData.length} models from ${models.length} total models`)
if (models.length > total) {
logger.debug(`Filtered out ${models.length - total} models after deduplication and filtering`)
}
const response: ApiModelsResponse = {
object: 'list',
data: modelData
}
// Add pagination metadata if applicable
if (filter?.limit !== undefined || filter?.offset !== undefined) {
response.total = total
response.offset = offset
if (filter?.limit !== undefined) {
response.limit = filter.limit
}
}
return response
} catch (error: any) {
logger.error('Error getting models:', error)
return {
object: 'list',
data: []
}
}
}
}
// Export singleton instance
export const modelsService = new ModelsService()

View File

@ -1,19 +1,9 @@
import { loggerService } from '@main/services/LoggerService'
import { reduxService } from '@main/services/ReduxService'
import { Model, Provider } from '@types'
import { Model, OpenAICompatibleModel, Provider } from '@types'
const logger = loggerService.withContext('ApiServerUtils')
// OpenAI compatible model format
export interface OpenAICompatibleModel {
id: string
object: 'model'
created: number
owned_by: string
provider?: string
provider_model_id?: string
}
export async function getAvailableProviders(): Promise<Provider[]> {
try {
// Wait for store to be ready before accessing providers
@ -23,12 +13,14 @@ export async function getAvailableProviders(): Promise<Provider[]> {
return []
}
// Only support OpenAI type providers for API server
const openAIProviders = providers.filter((p: Provider) => p.enabled && p.type === 'openai')
// Support OpenAI and Anthropic type providers for API server
const supportedProviders = providers.filter(
(p: Provider) => p.enabled && (p.type === 'openai' || p.type === 'anthropic')
)
logger.info(`Filtered to ${openAIProviders.length} OpenAI providers from ${providers.length} total providers`)
logger.info(`Filtered to ${supportedProviders.length} supported providers from ${providers.length} total providers`)
return openAIProviders
return supportedProviders
} catch (error: any) {
logger.error('Failed to get providers from Redux store:', error)
return []
@ -185,6 +177,7 @@ export function transformModelToOpenAI(model: Model): OpenAICompatibleModel {
return {
id: `${model.provider}:${model.id}`,
object: 'model',
name: model.name,
created: Math.floor(Date.now() / 1000),
owned_by: model.owned_by || model.provider,
provider: model.provider,
@ -215,10 +208,10 @@ export function validateProvider(provider: Provider): boolean {
return false
}
// Only support OpenAI type providers
if (provider.type !== 'openai') {
// Support OpenAI and Anthropic type providers
if (provider.type !== 'openai' && provider.type !== 'anthropic') {
logger.debug(
`Provider type '${provider.type}' not supported, only 'openai' type is currently supported: ${provider.id}`
`Provider type '${provider.type}' not supported, only 'openai' and 'anthropic' types are currently supported: ${provider.id}`
)
return false
}

View File

@ -0,0 +1,33 @@
import { z } from 'zod'
// Request schema for /v1/models
export const ApiModelsRequestSchema = z.object({
provider: z.enum(['openai', 'anthropic']).optional(),
offset: z.coerce.number().min(0).default(0).optional(),
limit: z.coerce.number().min(1).optional()
})
// OpenAI compatible model schema
export const OpenAICompatibleModelSchema = z.object({
id: z.string(),
object: z.literal('model'),
created: z.number(),
name: z.string(),
owned_by: z.string(),
provider: z.string().optional(),
provider_model_id: z.string().optional()
})
// Response schema for /v1/models
export const ApiModelsResponseSchema = z.object({
object: z.literal('list'),
data: z.array(OpenAICompatibleModelSchema),
total: z.number().optional(),
offset: z.number().optional(),
limit: z.number().optional()
})
// Inferred TypeScript types
export type ApiModelsRequest = z.infer<typeof ApiModelsRequestSchema>
export type OpenAICompatibleModel = z.infer<typeof OpenAICompatibleModelSchema>
export type ApiModelsResponse = z.infer<typeof ApiModelsResponseSchema>

View File

@ -16,6 +16,7 @@ import type { Message } from './newMessage'
import type { BaseTool, MCPTool } from './tool'
export * from './agent'
export * from './apiModels'
export * from './knowledge'
export * from './mcp'
export * from './notification'

79
tests/apis/chat.http Normal file
View File

@ -0,0 +1,79 @@
@host=http://localhost:23333
@token=cs-sk-af798ed4-7cf5-4fd7-ae4b-df203b164194
@agent_id=agent_1758092281575_tn9dxio9k
### List All Models
GET {{host}}/v1/models
Authorization: Bearer {{token}}
### List Models With Filters
GET {{host}}/v1/models?provider=anthropic&limit=5
Authorization: Bearer {{token}}
### OpenAI Chat Completion
POST {{host}}/v1/chat/completions
Authorization: Bearer {{token}}
Content-Type: application/json
{
"model": "tokenflux:openai/gpt-5-nano",
"messages": [
{
"role": "user",
"content": "Explain the theory of relativity in simple terms."
}
]
}
### OpenAI Chat Completion with streaming
POST {{host}}/v1/chat/completions
Authorization: Bearer {{token}}
Content-Type: application/json
{
"model": "tokenflux:openai/gpt-5-nano",
"stream": true,
"messages": [
{
"role": "user",
"content": "Explain the theory of relativity in simple terms."
}
]
}
### Anthropic Chat Message
POST {{host}}/v1/messages
Authorization: Bearer {{token}}
Content-Type: application/json
{
"model": "anthropic:claude-sonnet-4-20250514",
"stream": false,
"max_tokens": 1024,
"messages": [
{
"role": "user",
"content": "Explain the theory of relativity in simple terms."
}
]
}
### Anthropic Chat Message with streaming
POST {{host}}/v1/messages
Authorization: Bearer {{token}}
Content-Type: application/json
{
"model": "anthropic:claude-sonnet-4-20250514",
"stream": true,
"max_tokens": 1024,
"messages": [
{
"role": "user",
"content": "Explain the theory of relativity in simple terms."
}
]
}