fix(CodeToolsService): update package name for Claude Code SDK

This commit is contained in:
Vaayne 2025-09-30 18:55:17 +08:00
parent 02cf012671
commit 7250ce3514
3 changed files with 1 additions and 447 deletions

View File

@ -73,7 +73,7 @@ class CodeToolsService {
public async getPackageName(cliTool: string) {
switch (cliTool) {
case codeTools.claudeCode:
return '@anthropic-ai/claude-agent-sdk'
return '@anthropic-ai/claude-code'
case codeTools.geminiCli:
return '@google/gemini-cli'
case codeTools.openaiCodex:

View File

@ -1,341 +0,0 @@
# Agent Message Architecture Design Document
## Overview
This document describes the architecture for handling agent messages in Cherry Studio, including how agent-specific messages are generated, transformed to AI SDK format, stored, and sent to the UI. The system is designed to be agent-agnostic, allowing multiple agent types (Claude Code, OpenAI, etc.) to integrate seamlessly.
## Core Design Principles
1. **Agent Agnosticism**: The core message handling system should work with any agent type without modification
2. **Data Preservation**: All raw agent data must be preserved alongside transformed UI-friendly formats
3. **Streaming First**: Support real-time streaming of agent responses to the UI
4. **Type Safety**: Strong TypeScript interfaces ensure consistency across the pipeline
## Architecture Components
### 1. Agent Service Layer
Each agent (e.g., ClaudeCodeService) implements the `AgentServiceInterface`:
```typescript
interface AgentServiceInterface {
invoke(prompt: string, cwd: string, sessionId?: string, options?: any): AgentStream
}
```
#### Responsibilities:
- Spawn and manage agent-specific processes (e.g., Claude Code CLI)
- Parse agent-specific output formats (e.g., SDKMessage for Claude Code)
- Transform agent messages to AI SDK format
- Emit standardized `AgentStreamEvent` objects
### 2. Agent Stream Events
The standardized event interface that all agents emit:
```typescript
interface AgentStreamEvent {
type: 'chunk' | 'error' | 'complete'
chunk?: UIMessageChunk // AI SDK format for UI
rawAgentMessage?: any // Agent-specific raw message
error?: Error
agentResult?: any // Complete agent-specific result
}
```
### 3. Session Message Service
The `SessionMessageService` acts as the orchestration layer:
#### Responsibilities:
- Manages session lifecycle and persistence
- Collects streaming chunks and raw agent messages
- Stores structured data in the database
- Forwards events to the API layer
### 4. Database Storage
Session messages are stored with complete structured data:
```typescript
interface SessionMessageContent {
aiSDKChunks: UIMessageChunk[] // UI-friendly format
rawAgentMessages: any[] // Original agent messages
agentResult?: any // Complete agent result
agentType: string // Agent identifier
}
```
## Data Flow
```mermaid
graph TD
A[User Input] --> B[API Handler]
B --> C[SessionMessageService]
C --> D[Agent Service]
D --> E[Agent Process]
E --> F[Raw Agent Output]
F --> G[Transform to AI SDK]
G --> H[Emit AgentStreamEvent]
H --> I[SessionMessageService]
I --> J[Store in Database]
I --> K[Forward to Client]
K --> L[UI Rendering]
```
## Message Transformation Process
### Step 1: Raw Agent Message Generation
Each agent generates messages in its native format:
**Claude Code Example:**
```typescript
// SDKMessage from Claude Code CLI
{
type: 'assistant',
uuid: 'msg_123',
session_id: 'session_456',
message: {
role: 'assistant',
content: [
{ type: 'text', text: 'Hello, I can help...' },
{ type: 'tool_use', id: 'tool_1', name: 'read_file', input: {...} }
]
}
}
```
### Step 2: Transformation to AI SDK Format
The agent service transforms native messages to AI SDK `UIMessageChunk`:
```typescript
// In ClaudeCodeService
const emitChunks = (sdkMessage: SDKMessage) => {
// Transform to AI SDK format
const chunks = transformSDKMessageToUIChunk(sdkMessage)
for (const chunk of chunks) {
stream.emit('data', {
type: 'chunk',
chunk, // AI SDK format
rawAgentMessage: sdkMessage // Preserve original
})
}
}
```
**Transformed AI SDK Chunk:**
```typescript
{
type: 'text-delta',
id: 'msg_123',
delta: 'Hello, I can help...',
providerMetadata: {
claudeCode: {
originalSDKMessage: {...},
uuid: 'msg_123',
session_id: 'session_456'
}
}
}
```
### Step 3: Session Message Processing
The SessionMessageService collects and processes events:
```typescript
// Collect streaming data
const streamedChunks: UIMessageChunk[] = []
const rawAgentMessages: any[] = []
claudeStream.on('data', async (event: AgentStreamEvent) => {
switch (event.type) {
case 'chunk':
streamedChunks.push(event.chunk)
if (event.rawAgentMessage) {
rawAgentMessages.push(event.rawAgentMessage)
}
// Forward to client
sessionStream.emit('data', { type: 'chunk', chunk: event.chunk })
break
case 'complete':
// Store complete structured data
const content = {
aiSDKChunks: streamedChunks,
rawAgentMessages: rawAgentMessages,
agentResult: event.agentResult,
agentType: event.agentResult?.agentType || 'unknown'
}
// Save to database...
break
}
})
```
### Step 4: Client Streaming
The API handler converts events to Server-Sent Events (SSE):
```typescript
// In API handler
messageStream.on('data', (event: any) => {
switch (event.type) {
case 'chunk':
// Send AI SDK chunk as SSE
res.write(`data: ${JSON.stringify(event.chunk)}\n\n`)
break
case 'complete':
res.write('data: [DONE]\n\n')
res.end()
break
}
})
```
## Adding New Agent Types
To add support for a new agent (e.g., OpenAI):
### 1. Create Agent Service
```typescript
class OpenAIService implements AgentServiceInterface {
invokeStream(prompt: string, cwd: string, sessionId?: string, options?: any): AgentStream {
const stream = new OpenAIStream()
// Call OpenAI API
const openaiResponse = await openai.chat.completions.create({
messages: [{ role: 'user', content: prompt }],
stream: true
})
// Transform OpenAI format to AI SDK
for await (const chunk of openaiResponse) {
const aiSDKChunk = transformOpenAIToAISDK(chunk)
stream.emit('data', {
type: 'chunk',
chunk: aiSDKChunk,
rawAgentMessage: chunk // Preserve OpenAI format
})
}
return stream
}
}
```
### 2. Create Transform Function
```typescript
function transformOpenAIToAISDK(openaiChunk: OpenAIChunk): UIMessageChunk {
return {
type: 'text-delta',
id: openaiChunk.id,
delta: openaiChunk.choices[0].delta.content,
providerMetadata: {
openai: {
original: openaiChunk,
model: openaiChunk.model
}
}
}
}
```
### 3. Register Agent Type
Update the agent type enum and factory:
```typescript
export type AgentType = 'claude-code' | 'openai' | 'anthropic-api'
function createAgentService(type: AgentType): AgentServiceInterface {
switch (type) {
case 'claude-code':
return new ClaudeCodeService()
case 'openai':
return new OpenAIService()
// ...
}
}
```
## Benefits of This Architecture
1. **Extensibility**: Easy to add new agent types without modifying core logic
2. **Data Integrity**: Raw agent data is never lost during transformation
3. **Debugging**: Complete message history available for troubleshooting
4. **Performance**: Streaming support for real-time responses
5. **Type Safety**: Strong interfaces prevent runtime errors
6. **UI Consistency**: All agents provide data in standard AI SDK format
## Key Interfaces Reference
### AgentStreamEvent
```typescript
interface AgentStreamEvent {
type: 'chunk' | 'error' | 'complete'
chunk?: UIMessageChunk
rawAgentMessage?: any
error?: Error
agentResult?: any
}
```
### SessionMessageEntity
```typescript
interface SessionMessageEntity {
id: number
session_id: string
parent_id?: number
role: 'user' | 'assistant' | 'system' | 'tool'
type: string
content: string | SessionMessageContent
metadata?: Record<string, any>
created_at: string
updated_at: string
}
```
### SessionMessageContent
```typescript
interface SessionMessageContent {
aiSDKChunks: UIMessageChunk[]
rawAgentMessages: any[]
agentResult?: any
agentType: string
}
```
## Testing Strategy
### Unit Tests
- Test each transform function independently
- Verify event emission sequences
- Validate data structure preservation
### Integration Tests
- Test complete flow from input to database
- Verify streaming behavior
- Test error handling and recovery
### Agent-Specific Tests
- Validate agent-specific transformations
- Test edge cases for each agent type
- Verify metadata preservation
## Future Enhancements
1. **Message Replay**: Ability to replay sessions from stored raw messages
2. **Format Migration**: Tools to migrate between agent formats
3. **Analytics**: Aggregate metrics from raw agent data
4. **Caching**: Cache transformed chunks for performance
5. **Compression**: Compress raw messages for storage efficiency
## Conclusion
This architecture provides a robust, extensible foundation for handling messages from multiple AI agents while maintaining data integrity and providing a consistent interface for the UI. The separation of concerns between agent-specific logic and core message handling ensures the system can evolve to support new agents and features without breaking existing functionality.

View File

@ -1,105 +0,0 @@
# Inputbar Unification Plan
## Goal
Create a single configurable input bar that supports chat topics, agent sessions, and other contexts (e.g. mini window) without duplicating UI logic. Remove `AgentSessionInputbar.tsx` in favour of the shared implementation.
## Tasks
### 1. Configuration Layer
- [ ] Add `InputbarScope` registry (e.g. `src/renderer/src/config/registry/inputbar.ts`).
- [ ] Define per-scope options (features toggles, placeholders, min/max rows, token counter, quick panel, attachments, knowledge picker, mention models, translate button, abort button, etc.).
- [ ] Register defaults for chat (`TopicType.Chat`), agent session (`TopicType.Session`), and mini window scope.
### 2. InputbarTools Registry System (NEW)
- [ ] Create `ToolDefinition` interface with key, label, icon, condition, dependencies, and render function
- [ ] Implement tool registration mechanism in `src/renderer/src/config/registry/inputbarTools.ts`
- [ ] Create `InputbarToolsProvider` for shared state management (files, mentionedModels, knowledgeBases, etc.)
- [ ] Define tool context interfaces (`ToolContext`, `ToolRenderContext`) for dependency injection
- [ ] Migrate existing tools to registry-based definitions:
- [ ] new_topic tool
- [ ] attachment tool
- [ ] thinking tool
- [ ] web_search tool
- [ ] url_context tool
- [ ] knowledge_base tool
- [ ] mcp_tools tool
- [ ] generate_image tool
- [ ] mention_models tool
- [ ] quick_phrases tool
- [ ] clear_topic tool
- [ ] toggle_expand tool
- [ ] new_context tool
- [ ] Simplify InputbarTools component to use registry (reduce from 19 props to 3-5)
- [ ] Integrate tool visibility/order configuration with InputbarScope
### 3. Shared UI Composer
- [ ] Extract common UI from `Inputbar.tsx` into new `InputComposer` component that reads config + callbacks.
- [ ] Ensure composer handles textarea sizing, focus, drag/drop, token estimation, attachments, toolbar slots based on config.
- [ ] Provide controlled props for text, files, mentioned models, loading states, quick panel interactions.
### 4. Chat Wrapper Migration
- [ ] Refactor `Inputbar.tsx` to:
- Resolve scope via topic type.
- Fetch config via registry.
- Supply send/abort/translate/knowledge handlers to composer.
- Remove inline UI duplication now covered by composer.
- [ ] Verify chat-specific behaviour (knowledge save, auto translate, quick panel, model mentions) via config flags and callbacks.
### 5. Agent Session Wrapper Migration
- [ ] Rebuild session input bar (currently `AgentSessionInputbar.tsx`) as thin wrapper using composer and session scope config.
- [ ] Use session-specific hooks for message creation, model resolution, aborting, and streaming state.
- [ ] Once parity confirmed, delete `AgentSessionInputbar.tsx` and update all imports.
### 6. Cross-cutting Cleanup
- [ ] Remove duplicated state caches (`_text`, `_files`, `_mentionedModelsCache`) once wrappers manage persistence appropriately.
- [ ] Update typings (`MessageInputBaseParams`, etc.) if composer needs shared interfaces.
- [ ] Ensure quick panel integration works for all scopes (guard behind config flag).
### 7. Verification
- [ ] Run `yarn build:check` (after cleaning existing lint issues in WebSearchTool/ReadTool).
- [ ] Manual QA for chat topics, agent sessions, and mini window input: send, abort, attachments, translate, quick panel triggers, knowledge save.
- [ ] Add doc entry summarising registry usage and scope configuration.
## Notes
- Aligns with the approach taken for `MessageMenubar` scope registry.
- Composer should accept refs for external focus triggers (e.g. `MessageGroup` or session auto-focus).
- Plan to remove now-unused session-specific styles/components once migration completes.
## Implementation Details
### InputbarTools Registry Architecture
**Problem**: Current InputbarTools has 19 props causing severe prop drilling and coupling.
**Solution**: Registry-based tool system with dependency injection:
```typescript
// Tool Definition
interface ToolDefinition {
key: string
label: string | ((t: TFunction) => string)
icon?: React.ComponentType
condition?: (context: ToolContext) => boolean
visibleInScopes?: InputbarScope[]
dependencies?: { hooks?, refs?, state? }
render: (context: ToolRenderContext) => ReactNode
}
// Context Provider for shared state
InputbarToolsProvider manages:
- files, mentionedModels, knowledgeBases states
- setText, resizeTextArea actions
- Tool refs management
// Simplified Component Interface
InputbarTools props reduced to:
- scope: InputbarScope
- assistantId: string
- onNewContext?: () => void
```
**Benefits**:
- Decoupled tool definitions
- Easy to add/remove tools per scope
- Type-safe dependency injection
- Maintains drag-drop functionality
- Reduces component complexity from 19 to 3-5 props