feat(models): enhance models endpoint with filtering and pagination support

This commit is contained in:
Vaayne 2025-09-19 15:02:49 +08:00
parent 38076babcf
commit 73380d76df
4 changed files with 232 additions and 127 deletions

View File

@ -1,73 +1,129 @@
import express, { Request, Response } from 'express'
import { loggerService } from '../../services/LoggerService'
import { chatCompletionService } from '../services/chat-completion'
import { ModelsFilterSchema, modelsService } from '../services/models'
const logger = loggerService.withContext('ApiServerModelsRoutes')
const router = express.Router()
const router = express
.Router()
/**
* @swagger
* /v1/models:
* get:
* summary: List available models
* description: Returns a list of available AI models from all configured providers
* tags: [Models]
* responses:
* 200:
* description: List of available models
* content:
* application/json:
* schema:
* type: object
* properties:
* object:
* type: string
* example: list
* data:
* type: array
* items:
* $ref: '#/components/schemas/Model'
* 503:
* description: Service unavailable
* content:
* application/json:
* schema:
* $ref: '#/components/schemas/Error'
*/
router.get('/', async (_req: Request, res: Response) => {
try {
logger.info('Models list request received')
/**
* @swagger
* /v1/models:
* get:
* summary: List available models
* description: Returns a list of available AI models from all configured providers with optional filtering
* tags: [Models]
* parameters:
* - in: query
* name: provider
* schema:
* type: string
* enum: [openai, anthropic]
* description: Filter models by provider type
* - in: query
* name: offset
* schema:
* type: integer
* minimum: 0
* default: 0
* description: Pagination offset
* - in: query
* name: limit
* schema:
* type: integer
* minimum: 1
* description: Maximum number of models to return
* responses:
* 200:
* description: List of available models
* content:
* application/json:
* schema:
* type: object
* properties:
* object:
* type: string
* example: list
* data:
* type: array
* items:
* $ref: '#/components/schemas/Model'
* total:
* type: integer
* description: Total number of models (when using pagination)
* offset:
* type: integer
* description: Current offset (when using pagination)
* limit:
* type: integer
* description: Current limit (when using pagination)
* 400:
* description: Invalid query parameters
* content:
* application/json:
* schema:
* $ref: '#/components/schemas/Error'
* 503:
* description: Service unavailable
* content:
* application/json:
* schema:
* $ref: '#/components/schemas/Error'
*/
.get('/', async (req: Request, res: Response) => {
try {
logger.info('Models list request received', { query: req.query })
const models = await chatCompletionService.getModels()
// Validate query parameters using Zod schema
const filterResult = ModelsFilterSchema.safeParse(req.query)
if (models.length === 0) {
logger.warn(
'No models available from providers. This may be because no OpenAI providers are configured or enabled.'
)
}
logger.info(`Returning ${models.length} models (OpenAI providers only)`)
logger.debug(
'Model IDs:',
models.map((m) => m.id)
)
return res.json({
object: 'list',
data: models
})
} catch (error: any) {
logger.error('Error fetching models:', error)
return res.status(503).json({
error: {
message: 'Failed to retrieve models from available providers',
type: 'service_unavailable',
code: 'models_unavailable'
if (!filterResult.success) {
logger.warn('Invalid query parameters:', filterResult.error.issues)
return res.status(400).json({
error: {
message: 'Invalid query parameters',
type: 'invalid_request_error',
code: 'invalid_parameters',
details: filterResult.error.issues.map((issue) => ({
field: issue.path.join('.'),
message: issue.message
}))
}
})
}
})
}
})
const filter = filterResult.data
const response = await modelsService.getModels(filter)
if (response.data.length === 0) {
logger.warn(
'No models available from providers. This may be because no OpenAI/Anthropic providers are configured or enabled.',
{ filter }
)
}
logger.info(`Returning ${response.data.length} models`, {
filter,
total: response.total
})
logger.debug(
'Model IDs:',
response.data.map((m) => m.id)
)
return res.json(response)
} catch (error: any) {
logger.error('Error fetching models:', error)
return res.status(503).json({
error: {
message: 'Failed to retrieve models from available providers',
type: 'service_unavailable',
code: 'models_unavailable'
}
})
}
})
export { router as modelsRoutes }

View File

@ -2,70 +2,16 @@ import OpenAI from 'openai'
import { ChatCompletionCreateParams } from 'openai/resources'
import { loggerService } from '../../services/LoggerService'
import {
getProviderByModel,
getRealProviderModel,
listAllAvailableModels,
OpenAICompatibleModel,
transformModelToOpenAI,
validateProvider
} from '../utils'
import { getProviderByModel, getRealProviderModel, validateProvider } from '../utils'
const logger = loggerService.withContext('ChatCompletionService')
export interface ModelData extends OpenAICompatibleModel {
provider_id: string
model_id: string
name: string
}
export interface ValidationResult {
isValid: boolean
errors: string[]
}
export class ChatCompletionService {
async getModels(): Promise<ModelData[]> {
try {
logger.info('Getting available models from providers')
const models = await listAllAvailableModels()
// Use Map to deduplicate models by their full ID (provider:model_id)
const uniqueModels = new Map<string, ModelData>()
for (const model of models) {
const openAIModel = transformModelToOpenAI(model)
const fullModelId = openAIModel.id // This is already in format "provider:model_id"
// Only add if not already present (first occurrence wins)
if (!uniqueModels.has(fullModelId)) {
uniqueModels.set(fullModelId, {
...openAIModel,
provider_id: model.provider,
model_id: model.id,
name: model.name
})
} else {
logger.debug(`Skipping duplicate model: ${fullModelId}`)
}
}
const modelData = Array.from(uniqueModels.values())
logger.info(`Successfully retrieved ${modelData.length} unique models from ${models.length} total models`)
if (models.length > modelData.length) {
logger.debug(`Filtered out ${models.length - modelData.length} duplicate models`)
}
return modelData
} catch (error: any) {
logger.error('Error getting models:', error)
return []
}
}
validateRequest(request: ChatCompletionCreateParams): ValidationResult {
const errors: string[] = []
@ -98,17 +44,6 @@ export class ChatCompletionService {
}
// Validate optional parameters
if (request.temperature !== undefined) {
if (typeof request.temperature !== 'number' || request.temperature < 0 || request.temperature > 2) {
errors.push('Temperature must be a number between 0 and 2')
}
}
if (request.max_tokens !== undefined) {
if (typeof request.max_tokens !== 'number' || request.max_tokens < 1) {
errors.push('max_tokens must be a positive number')
}
}
return {
isValid: errors.length === 0,

View File

@ -0,0 +1,112 @@
import { z } from 'zod'
import { loggerService } from '../../services/LoggerService'
import { getAvailableProviders, listAllAvailableModels, OpenAICompatibleModel, transformModelToOpenAI } from '../utils'
const logger = loggerService.withContext('ModelsService')
// Zod schema for models filtering
export const ModelsFilterSchema = z.object({
provider: z.enum(['openai', 'anthropic']).optional(),
offset: z.coerce.number().min(0).default(0).optional(),
limit: z.coerce.number().min(1).optional()
})
export type ModelsFilter = z.infer<typeof ModelsFilterSchema>
export interface ModelsResponse {
object: 'list'
data: OpenAICompatibleModel[]
total?: number
offset?: number
limit?: number
}
export class ModelsService {
async getModels(filter?: ModelsFilter): Promise<ModelsResponse> {
try {
logger.info('Getting available models from providers', { filter })
const models = await listAllAvailableModels()
const providers = await getAvailableProviders()
// Use Map to deduplicate models by their full ID (provider:model_id)
const uniqueModels = new Map<string, OpenAICompatibleModel>()
for (const model of models) {
const openAIModel = transformModelToOpenAI(model)
const fullModelId = openAIModel.id // This is already in format "provider:model_id"
// Only add if not already present (first occurrence wins)
if (!uniqueModels.has(fullModelId)) {
uniqueModels.set(fullModelId, {
...openAIModel,
name: model.name
})
} else {
logger.debug(`Skipping duplicate model: ${fullModelId}`)
}
}
let modelData = Array.from(uniqueModels.values())
// Apply filters
if (filter?.provider) {
const providerType = filter.provider
modelData = modelData.filter((model) => {
// Find the provider for this model and check its type
const provider = providers.find((p) => p.id === model.provider)
return provider && provider.type === providerType
})
logger.debug(`Filtered by provider type '${providerType}': ${modelData.length} models`)
}
const total = modelData.length
// Apply pagination
const offset = filter?.offset || 0
const limit = filter?.limit
if (limit !== undefined) {
modelData = modelData.slice(offset, offset + limit)
logger.debug(
`Applied pagination: offset=${offset}, limit=${limit}, showing ${modelData.length} of ${total} models`
)
} else if (offset > 0) {
modelData = modelData.slice(offset)
logger.debug(`Applied offset: offset=${offset}, showing ${modelData.length} of ${total} models`)
}
logger.info(`Successfully retrieved ${modelData.length} models from ${models.length} total models`)
if (models.length > total) {
logger.debug(`Filtered out ${models.length - total} models after deduplication and filtering`)
}
const response: ModelsResponse = {
object: 'list',
data: modelData
}
// Add pagination metadata if applicable
if (filter?.limit !== undefined || filter?.offset !== undefined) {
response.total = total
response.offset = offset
if (filter?.limit !== undefined) {
response.limit = filter.limit
}
}
return response
} catch (error: any) {
logger.error('Error getting models:', error)
return {
object: 'list',
data: []
}
}
}
}
// Export singleton instance
export const modelsService = new ModelsService()

View File

@ -9,6 +9,7 @@ export interface OpenAICompatibleModel {
id: string
object: 'model'
created: number
name: string
owned_by: string
provider?: string
provider_model_id?: string
@ -185,6 +186,7 @@ export function transformModelToOpenAI(model: Model): OpenAICompatibleModel {
return {
id: `${model.provider}:${model.id}`,
object: 'model',
name: model.name,
created: Math.floor(Date.now() / 1000),
owned_by: model.owned_by || model.provider,
provider: model.provider,