cherry-studio/src/renderer/src/providers/OpenAIProvider.ts
2025-01-19 16:56:35 +08:00

417 lines
12 KiB
TypeScript

import { getOpenAIWebSearchParams, isSupportedModel, isVisionModel } from '@renderer/config/models'
import { getStoreSetting } from '@renderer/hooks/useSettings'
import i18n from '@renderer/i18n'
import { getAssistantSettings, getDefaultModel, getTopNamingModel } from '@renderer/services/AssistantService'
import { EVENT_NAMES } from '@renderer/services/EventService'
import { filterContextMessages } from '@renderer/services/MessagesService'
import { Assistant, FileTypes, GenerateImageParams, Message, Model, Provider, Suggestion } from '@renderer/types'
import { removeSpecialCharacters } from '@renderer/utils'
import { takeRight } from 'lodash'
import OpenAI, { AzureOpenAI } from 'openai'
import {
ChatCompletionContentPart,
ChatCompletionCreateParamsNonStreaming,
ChatCompletionMessageParam
} from 'openai/resources'
import { CompletionsParams } from '.'
import BaseProvider from './BaseProvider'
export default class OpenAIProvider extends BaseProvider {
private sdk: OpenAI
constructor(provider: Provider) {
super(provider)
if (provider.id === 'azure-openai') {
this.sdk = new AzureOpenAI({
dangerouslyAllowBrowser: true,
apiKey: this.apiKey,
apiVersion: provider.apiVersion,
endpoint: provider.apiHost
})
return
}
this.sdk = new OpenAI({
dangerouslyAllowBrowser: true,
apiKey: this.apiKey,
baseURL: this.getBaseURL(),
defaultHeaders: this.defaultHeaders()
})
}
private get isNotSupportFiles() {
const providers = ['deepseek', 'baichuan', 'minimax']
return providers.includes(this.provider.id)
}
private async getMessageParam(
message: Message,
model: Model
): Promise<OpenAI.Chat.Completions.ChatCompletionMessageParam> {
const isVision = isVisionModel(model)
const content = await this.getMessageContent(message)
if (!message.files) {
return {
role: message.role,
content
}
}
if (this.isNotSupportFiles) {
if (message.files) {
const textFiles = message.files.filter((file) => [FileTypes.TEXT, FileTypes.DOCUMENT].includes(file.type))
if (textFiles.length > 0) {
let text = ''
const divider = '\n\n---\n\n'
for (const file of textFiles) {
const fileContent = (await window.api.file.read(file.id + file.ext)).trim()
const fileNameRow = 'file: ' + file.origin_name + '\n\n'
text = text + fileNameRow + fileContent + divider
}
return {
role: message.role,
content: content + divider + text
}
}
}
return {
role: message.role,
content
}
}
const parts: ChatCompletionContentPart[] = [
{
type: 'text',
text: content
}
]
for (const file of message.files || []) {
if (file.type === FileTypes.IMAGE && isVision) {
const image = await window.api.file.base64Image(file.id + file.ext)
parts.push({
type: 'image_url',
image_url: { url: image.data }
})
}
if ([FileTypes.TEXT, FileTypes.DOCUMENT].includes(file.type)) {
const fileContent = await (await window.api.file.read(file.id + file.ext)).trim()
parts.push({
type: 'text',
text: file.origin_name + '\n' + fileContent
})
}
}
return {
role: message.role,
content: parts
} as ChatCompletionMessageParam
}
async completions({ messages, assistant, onChunk, onFilterMessages }: CompletionsParams): Promise<void> {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
const systemMessage = assistant.prompt ? { role: 'system', content: assistant.prompt } : undefined
const userMessages: ChatCompletionMessageParam[] = []
const _messages = filterContextMessages(takeRight(messages, contextCount + 1))
onFilterMessages(_messages)
for (const message of _messages) {
userMessages.push(await this.getMessageParam(message, model))
}
const isOpenAIo1 = model.id.startsWith('o1')
const isSupportStreamOutput = () => {
if (this.provider.id === 'github' && isOpenAIo1) {
return false
}
return streamOutput
}
let time_first_token_millsec = 0
const start_time_millsec = new Date().getTime()
// @ts-ignore key is not typed
const stream = await this.sdk.chat.completions.create({
model: model.id,
messages: [isOpenAIo1 ? undefined : systemMessage, ...userMessages].filter(
Boolean
) as ChatCompletionMessageParam[],
temperature: isOpenAIo1 ? 1 : assistant?.settings?.temperature,
top_p: assistant?.settings?.topP,
max_tokens: maxTokens,
keep_alive: this.keepAliveTime,
stream: isSupportStreamOutput(),
...(assistant.enableWebSearch ? getOpenAIWebSearchParams(model) : {}),
...this.getCustomParameters(assistant)
})
if (!isSupportStreamOutput()) {
const time_completion_millsec = new Date().getTime() - start_time_millsec
return onChunk({
text: stream.choices[0].message?.content || '',
usage: stream.usage,
metrics: {
completion_tokens: stream.usage?.completion_tokens,
time_completion_millsec,
time_first_token_millsec: 0
}
})
}
for await (const chunk of stream) {
if (window.keyv.get(EVENT_NAMES.CHAT_COMPLETION_PAUSED)) {
break
}
if (time_first_token_millsec == 0) {
time_first_token_millsec = new Date().getTime() - start_time_millsec
}
const time_completion_millsec = new Date().getTime() - start_time_millsec
onChunk({
text: chunk.choices[0]?.delta?.content || '',
usage: chunk.usage,
metrics: {
completion_tokens: chunk.usage?.completion_tokens,
time_completion_millsec,
time_first_token_millsec
}
})
}
}
async translate(message: Message, assistant: Assistant, onResponse?: (text: string) => void) {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const messages = [
{ role: 'system', content: assistant.prompt },
{ role: 'user', content: message.content }
]
const isOpenAIo1 = model.id.startsWith('o1')
const isSupportedStreamOutput = () => {
if (!onResponse) {
return false
}
if (this.provider.id === 'github' && isOpenAIo1) {
return false
}
return true
}
const stream = isSupportedStreamOutput()
// @ts-ignore key is not typed
const response = await this.sdk.chat.completions.create({
model: model.id,
messages: messages as ChatCompletionMessageParam[],
stream,
keep_alive: this.keepAliveTime,
temperature: assistant?.settings?.temperature
})
if (!stream) {
return response.choices[0].message?.content || ''
}
let text = ''
for await (const chunk of response) {
text += chunk.choices[0]?.delta?.content || ''
onResponse?.(text)
}
return text
}
public async summaries(messages: Message[], assistant: Assistant): Promise<string> {
const model = getTopNamingModel() || assistant.model || getDefaultModel()
const userMessages = takeRight(messages, 5)
.filter((message) => !message.isPreset)
.map((message) => ({
role: message.role,
content: message.content
}))
const userMessageContent = userMessages.reduce((prev, curr) => {
const content = curr.role === 'user' ? `User: ${curr.content}` : `Assistant: ${curr.content}`
return prev + (prev ? '\n' : '') + content
}, '')
const systemMessage = {
role: 'system',
content: getStoreSetting('topicNamingPrompt') || i18n.t('prompts.title')
}
const userMessage = {
role: 'user',
content: userMessageContent
}
// @ts-ignore key is not typed
const response = await this.sdk.chat.completions.create({
model: model.id,
messages: [systemMessage, userMessage] as ChatCompletionMessageParam[],
stream: false,
keep_alive: this.keepAliveTime,
max_tokens: 1000
})
return removeSpecialCharacters(response.choices[0].message?.content?.substring(0, 50) || '')
}
public async generateText({ prompt, content }: { prompt: string; content: string }): Promise<string> {
const model = getDefaultModel()
const response = await this.sdk.chat.completions.create({
model: model.id,
stream: false,
messages: [
{ role: 'system', content: prompt },
{ role: 'user', content }
]
})
return response.choices[0].message?.content || ''
}
async suggestions(messages: Message[], assistant: Assistant): Promise<Suggestion[]> {
const model = assistant.model
if (!model) {
return []
}
const response: any = await this.sdk.request({
method: 'post',
path: '/advice_questions',
body: {
messages: messages.filter((m) => m.role === 'user').map((m) => ({ role: m.role, content: m.content })),
model: model.id,
max_tokens: 0,
temperature: 0,
n: 0
}
})
return response?.questions?.filter(Boolean)?.map((q: any) => ({ content: q })) || []
}
public async check(model: Model): Promise<{ valid: boolean; error: Error | null }> {
if (!model) {
return { valid: false, error: new Error('No model found') }
}
const body = {
model: model.id,
messages: [{ role: 'user', content: 'hi' }],
max_tokens: 100,
stream: false
}
try {
const response = await this.sdk.chat.completions.create(body as ChatCompletionCreateParamsNonStreaming)
return {
valid: Boolean(response?.choices[0].message),
error: null
}
} catch (error: any) {
return {
valid: false,
error
}
}
}
public async models(): Promise<OpenAI.Models.Model[]> {
try {
const response = await this.sdk.models.list()
if (this.provider.id === 'github') {
// @ts-ignore key is not typed
return response.body
.map((model) => ({
id: model.name,
description: model.summary,
object: 'model',
owned_by: model.publisher
}))
.filter(isSupportedModel)
}
if (this.provider.id === 'together') {
// @ts-ignore key is not typed
return response?.body
.map((model: any) => ({
id: model.id,
description: model.display_name,
object: 'model',
owned_by: model.organization
}))
.filter(isSupportedModel)
}
const models = response?.data || []
return models.filter(isSupportedModel)
} catch (error) {
return []
}
}
public async generateImage({
model,
prompt,
negativePrompt,
imageSize,
batchSize,
seed,
numInferenceSteps,
guidanceScale,
signal,
promptEnhancement
}: GenerateImageParams): Promise<string[]> {
const response = (await this.sdk.request({
method: 'post',
path: '/images/generations',
signal,
body: {
model,
prompt,
negative_prompt: negativePrompt,
image_size: imageSize,
batch_size: batchSize,
seed: seed ? parseInt(seed) : undefined,
num_inference_steps: numInferenceSteps,
guidance_scale: guidanceScale,
prompt_enhancement: promptEnhancement
}
})) as { data: Array<{ url: string }> }
return response.data.map((item) => item.url)
}
public async getEmbeddingDimensions(model: Model): Promise<number> {
const data = await this.sdk.embeddings.create({
model: model.id,
input: 'hi'
})
return data.data[0].embedding.length
}
}