cherry-studio/src/main/apiServer/services/chat-completion.ts
Vaayne 39fcc04d78 refactor(logging): improve logging messages for clarity and consistency
- Updated logging statements across various modules to provide more structured and detailed information.
- Changed log levels from info to debug for less critical messages to reduce log clutter.
- Enhanced error logging to include relevant context such as agentId, sessionId, and model details.
- Standardized log messages to follow a consistent format, improving readability and maintainability.
2025-09-25 23:33:33 +08:00

260 lines
6.9 KiB
TypeScript

import { Provider } from '@types'
import OpenAI from 'openai'
import { ChatCompletionCreateParams, ChatCompletionCreateParamsStreaming } from 'openai/resources'
import { loggerService } from '../../services/LoggerService'
import { ModelValidationError, validateModelId } from '../utils'
const logger = loggerService.withContext('ChatCompletionService')
export interface ValidationResult {
isValid: boolean
errors: string[]
}
export class ChatCompletionValidationError extends Error {
constructor(public readonly errors: string[]) {
super(`Request validation failed: ${errors.join('; ')}`)
this.name = 'ChatCompletionValidationError'
}
}
export class ChatCompletionModelError extends Error {
constructor(public readonly error: ModelValidationError) {
super(`Model validation failed: ${error.message}`)
this.name = 'ChatCompletionModelError'
}
}
export type PrepareRequestResult =
| { status: 'validation_error'; errors: string[] }
| { status: 'model_error'; error: ModelValidationError }
| {
status: 'ok'
provider: Provider
modelId: string
client: OpenAI
providerRequest: ChatCompletionCreateParams
}
export class ChatCompletionService {
async resolveProviderContext(
model: string
): Promise<
{ ok: false; error: ModelValidationError } | { ok: true; provider: Provider; modelId: string; client: OpenAI }
> {
const modelValidation = await validateModelId(model)
if (!modelValidation.valid) {
return {
ok: false,
error: modelValidation.error!
}
}
const provider = modelValidation.provider!
if (provider.type !== 'openai') {
return {
ok: false,
error: {
type: 'unsupported_provider_type',
message: `Provider '${provider.id}' of type '${provider.type}' is not supported for OpenAI chat completions`,
code: 'unsupported_provider_type'
}
}
}
const modelId = modelValidation.modelId!
const client = new OpenAI({
baseURL: provider.apiHost,
apiKey: provider.apiKey
})
return {
ok: true,
provider,
modelId,
client
}
}
async prepareRequest(request: ChatCompletionCreateParams, stream: boolean): Promise<PrepareRequestResult> {
const requestValidation = this.validateRequest(request)
if (!requestValidation.isValid) {
return {
status: 'validation_error',
errors: requestValidation.errors
}
}
const providerContext = await this.resolveProviderContext(request.model!)
if (!providerContext.ok) {
return {
status: 'model_error',
error: providerContext.error
}
}
const { provider, modelId, client } = providerContext
logger.debug('Model validation successful', {
provider: provider.id,
providerType: provider.type,
modelId,
fullModelId: request.model
})
return {
status: 'ok',
provider,
modelId,
client,
providerRequest: stream
? {
...request,
model: modelId,
stream: true as const
}
: {
...request,
model: modelId,
stream: false as const
}
}
}
validateRequest(request: ChatCompletionCreateParams): ValidationResult {
const errors: string[] = []
// Validate messages
if (!request.messages) {
errors.push('Messages array is required')
} else if (!Array.isArray(request.messages)) {
errors.push('Messages must be an array')
} else if (request.messages.length === 0) {
errors.push('Messages array cannot be empty')
} else {
// Validate each message
request.messages.forEach((message, index) => {
if (!message.role) {
errors.push(`Message ${index}: role is required`)
}
if (!message.content) {
errors.push(`Message ${index}: content is required`)
}
})
}
// Validate optional parameters
return {
isValid: errors.length === 0,
errors
}
}
async processCompletion(request: ChatCompletionCreateParams): Promise<{
provider: Provider
modelId: string
response: OpenAI.Chat.Completions.ChatCompletion
}> {
try {
logger.debug('Processing chat completion request', {
model: request.model,
messageCount: request.messages.length,
stream: request.stream
})
const preparation = await this.prepareRequest(request, false)
if (preparation.status === 'validation_error') {
throw new ChatCompletionValidationError(preparation.errors)
}
if (preparation.status === 'model_error') {
throw new ChatCompletionModelError(preparation.error)
}
const { provider, modelId, client, providerRequest } = preparation
logger.debug('Sending request to provider', {
provider: provider.id,
model: modelId,
apiHost: provider.apiHost
})
const response = (await client.chat.completions.create(providerRequest)) as OpenAI.Chat.Completions.ChatCompletion
logger.info('Chat completion processed', {
modelId,
provider: provider.id
})
return {
provider,
modelId,
response
}
} catch (error: any) {
logger.error('Error processing chat completion', {
error,
model: request.model
})
throw error
}
}
async processStreamingCompletion(request: ChatCompletionCreateParams): Promise<{
provider: Provider
modelId: string
stream: AsyncIterable<OpenAI.Chat.Completions.ChatCompletionChunk>
}> {
try {
logger.debug('Processing streaming chat completion request', {
model: request.model,
messageCount: request.messages.length
})
const preparation = await this.prepareRequest(request, true)
if (preparation.status === 'validation_error') {
throw new ChatCompletionValidationError(preparation.errors)
}
if (preparation.status === 'model_error') {
throw new ChatCompletionModelError(preparation.error)
}
const { provider, modelId, client, providerRequest } = preparation
logger.debug('Sending streaming request to provider', {
provider: provider.id,
model: modelId,
apiHost: provider.apiHost
})
const streamRequest = providerRequest as ChatCompletionCreateParamsStreaming
const stream = (await client.chat.completions.create(
streamRequest
)) as AsyncIterable<OpenAI.Chat.Completions.ChatCompletionChunk>
logger.info('Streaming chat completion started', {
modelId,
provider: provider.id
})
return {
provider,
modelId,
stream
}
} catch (error: any) {
logger.error('Error processing streaming chat completion', {
error,
model: request.model
})
throw error
}
}
}
// Export singleton instance
export const chatCompletionService = new ChatCompletionService()