cherry-studio/src/renderer/src/providers/AiProvider/AnthropicProvider.ts
SuYao c17fdb81aa Feat/claude websearch support (#5771)
* feat: enhance web search capabilities in AnthropicProvider

- Added support for Claude models in web search functionality with a new regex.
- Implemented logic to retrieve web search parameters and handle web search results.
- Updated message handling to include web search progress and completion states.
- Enhanced citation formatting for web search results from Anthropic source.

* feat: import WebSearchResultBlock for enhanced message handling

- Added import for WebSearchResultBlock from the Anthropic SDK to improve message processing capabilities in messageBlock.ts.
- Removed duplicate import to streamline the code.

* chore: update @anthropic-ai/sdk to version 0.41.0 in package.json and yarn.lock

* Update src/renderer/src/store/messageBlock.ts

Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>

---------

Co-authored-by: Chen Tao <70054568+eeee0717@users.noreply.github.com>
Co-authored-by: sourcery-ai[bot] <58596630+sourcery-ai[bot]@users.noreply.github.com>
2025-05-08 21:30:43 +08:00

687 lines
21 KiB
TypeScript

import Anthropic from '@anthropic-ai/sdk'
import {
MessageCreateParamsNonStreaming,
MessageParam,
TextBlockParam,
ToolUnion,
WebSearchResultBlock,
WebSearchTool20250305,
WebSearchToolResultError
} from '@anthropic-ai/sdk/resources'
import { DEFAULT_MAX_TOKENS } from '@renderer/config/constant'
import { isReasoningModel, isVisionModel, isWebSearchModel } from '@renderer/config/models'
import { getStoreSetting } from '@renderer/hooks/useSettings'
import i18n from '@renderer/i18n'
import { getAssistantSettings, getDefaultModel, getTopNamingModel } from '@renderer/services/AssistantService'
import FileManager from '@renderer/services/FileManager'
import {
filterContextMessages,
filterEmptyMessages,
filterUserRoleStartMessages
} from '@renderer/services/MessagesService'
import {
Assistant,
EFFORT_RATIO,
FileTypes,
MCPToolResponse,
Model,
Provider,
Suggestion,
WebSearchSource
} from '@renderer/types'
import { ChunkType } from '@renderer/types/chunk'
import type { Message } from '@renderer/types/newMessage'
import { removeSpecialCharactersForTopicName } from '@renderer/utils'
import { mcpToolCallResponseToAnthropicMessage, parseAndCallTools } from '@renderer/utils/mcp-tools'
import { findFileBlocks, findImageBlocks, getMainTextContent } from '@renderer/utils/messageUtils/find'
import { buildSystemPrompt } from '@renderer/utils/prompt'
import { first, flatten, sum, takeRight } from 'lodash'
import OpenAI from 'openai'
import { CompletionsParams } from '.'
import BaseProvider from './BaseProvider'
interface ReasoningConfig {
type: 'enabled' | 'disabled'
budget_tokens?: number
}
export default class AnthropicProvider extends BaseProvider {
private sdk: Anthropic
constructor(provider: Provider) {
super(provider)
this.sdk = new Anthropic({
apiKey: this.apiKey,
baseURL: this.getBaseURL(),
dangerouslyAllowBrowser: true,
defaultHeaders: {
'anthropic-beta': 'output-128k-2025-02-19'
}
})
}
public getBaseURL(): string {
return this.provider.apiHost
}
/**
* Get the message parameter
* @param message - The message
* @returns The message parameter
*/
private async getMessageParam(message: Message): Promise<MessageParam> {
const parts: MessageParam['content'] = [
{
type: 'text',
text: getMainTextContent(message)
}
]
// Get and process image blocks
const imageBlocks = findImageBlocks(message)
for (const imageBlock of imageBlocks) {
if (imageBlock.file) {
// Handle uploaded file
const file = imageBlock.file
const base64Data = await window.api.file.base64Image(file.id + file.ext)
parts.push({
type: 'image',
source: {
data: base64Data.base64,
media_type: base64Data.mime.replace('jpg', 'jpeg') as any,
type: 'base64'
}
})
}
}
// Get and process file blocks
const fileBlocks = findFileBlocks(message)
for (const fileBlock of fileBlocks) {
const { file } = fileBlock
if ([FileTypes.TEXT, FileTypes.DOCUMENT].includes(file.type)) {
if (file.ext === '.pdf' && file.size < 32 * 1024 * 1024) {
const base64Data = await FileManager.readBase64File(file)
parts.push({
type: 'document',
source: {
type: 'base64',
media_type: 'application/pdf',
data: base64Data
}
})
} else {
const fileContent = await (await window.api.file.read(file.id + file.ext)).trim()
parts.push({
type: 'text',
text: file.origin_name + '\n' + fileContent
})
}
}
}
return {
role: message.role === 'system' ? 'user' : message.role,
content: parts
}
}
private async getWebSearchParams(model: Model): Promise<WebSearchTool20250305 | undefined> {
if (!isWebSearchModel(model)) {
return undefined
}
return {
type: 'web_search_20250305',
name: 'web_search',
max_uses: 5
} as WebSearchTool20250305
}
/**
* Get the temperature
* @param assistant - The assistant
* @param model - The model
* @returns The temperature
*/
private getTemperature(assistant: Assistant, model: Model) {
return isReasoningModel(model) ? undefined : assistant?.settings?.temperature
}
/**
* Get the top P
* @param assistant - The assistant
* @param model - The model
* @returns The top P
*/
private getTopP(assistant: Assistant, model: Model) {
return isReasoningModel(model) ? undefined : assistant?.settings?.topP
}
/**
* Get the reasoning effort
* @param assistant - The assistant
* @param model - The model
* @returns The reasoning effort
*/
private getBudgetToken(assistant: Assistant, model: Model): ReasoningConfig | undefined {
if (!isReasoningModel(model)) {
return undefined
}
const { maxTokens } = getAssistantSettings(assistant)
const reasoningEffort = assistant?.settings?.reasoning_effort
if (reasoningEffort === undefined) {
return {
type: 'disabled'
}
}
const effortRatio = EFFORT_RATIO[reasoningEffort]
const budgetTokens = Math.floor((maxTokens || DEFAULT_MAX_TOKENS) * effortRatio * 0.8)
return {
type: 'enabled',
budget_tokens: budgetTokens
}
}
/**
* Generate completions
* @param messages - The messages
* @param assistant - The assistant
* @param mcpTools - The MCP tools
* @param onChunk - The onChunk callback
* @param onFilterMessages - The onFilterMessages callback
*/
public async completions({ messages, assistant, mcpTools, onChunk, onFilterMessages }: CompletionsParams) {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
const userMessagesParams: MessageParam[] = []
const _messages = filterUserRoleStartMessages(
filterContextMessages(filterEmptyMessages(takeRight(messages, contextCount + 2)))
)
onFilterMessages(_messages)
for (const message of _messages) {
userMessagesParams.push(await this.getMessageParam(message))
}
const userMessages = flatten(userMessagesParams)
const lastUserMessage = _messages.findLast((m) => m.role === 'user')
// const tools = mcpTools ? mcpToolsToAnthropicTools(mcpTools) : undefined
let systemPrompt = assistant.prompt
if (mcpTools && mcpTools.length > 0) {
systemPrompt = buildSystemPrompt(systemPrompt, mcpTools)
}
let systemMessage: TextBlockParam | undefined = undefined
if (systemPrompt) {
systemMessage = {
type: 'text',
text: systemPrompt
}
}
const isEnabledBuiltinWebSearch = assistant.enableWebSearch
const tools: ToolUnion[] = []
if (isEnabledBuiltinWebSearch) {
const webSearchTool = await this.getWebSearchParams(model)
if (webSearchTool) {
tools.push(webSearchTool)
}
}
const body: MessageCreateParamsNonStreaming = {
model: model.id,
messages: userMessages,
// tools: isEmpty(tools) ? undefined : tools,
max_tokens: maxTokens || DEFAULT_MAX_TOKENS,
temperature: this.getTemperature(assistant, model),
top_p: this.getTopP(assistant, model),
system: systemMessage ? [systemMessage] : undefined,
// @ts-ignore thinking
thinking: this.getBudgetToken(assistant, model),
tools: tools,
...this.getCustomParameters(assistant)
}
let time_first_token_millsec = 0
let time_first_content_millsec = 0
let checkThinkingContent = false
let thinking_content = ''
const start_time_millsec = new Date().getTime()
if (!streamOutput) {
const message = await this.sdk.messages.create({ ...body, stream: false })
const time_completion_millsec = new Date().getTime() - start_time_millsec
let text = ''
let reasoning_content = ''
if (message.content && message.content.length > 0) {
const thinkingBlock = message.content.find((block) => block.type === 'thinking')
const textBlock = message.content.find((block) => block.type === 'text')
if (thinkingBlock && 'thinking' in thinkingBlock) {
reasoning_content = thinkingBlock.thinking
}
if (textBlock && 'text' in textBlock) {
text = textBlock.text
}
}
return onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
text,
reasoning_content,
usage: message.usage as any,
metrics: {
completion_tokens: message.usage.output_tokens,
time_completion_millsec,
time_first_token_millsec: 0
}
}
})
}
const { abortController, cleanup } = this.createAbortController(lastUserMessage?.id)
const { signal } = abortController
const toolResponses: MCPToolResponse[] = []
const processStream = (body: MessageCreateParamsNonStreaming, idx: number) => {
return new Promise<void>((resolve, reject) => {
// 等待接口返回流
onChunk({ type: ChunkType.LLM_RESPONSE_CREATED })
let hasThinkingContent = false
this.sdk.messages
.stream({ ...body, stream: true }, { signal, timeout: 5 * 60 * 1000 })
.on('text', (text) => {
if (hasThinkingContent && !checkThinkingContent) {
checkThinkingContent = true
onChunk({
type: ChunkType.THINKING_COMPLETE,
text: thinking_content,
thinking_millsec: new Date().getTime() - time_first_content_millsec
})
}
if (time_first_token_millsec == 0) {
time_first_token_millsec = new Date().getTime()
}
thinking_content = ''
checkThinkingContent = false
hasThinkingContent = false
if (!hasThinkingContent && time_first_content_millsec === 0) {
time_first_content_millsec = new Date().getTime()
}
onChunk({ type: ChunkType.TEXT_DELTA, text })
})
.on('contentBlock', (block) => {
if (block.type === 'server_tool_use' && block.name === 'web_search') {
onChunk({
type: ChunkType.LLM_WEB_SEARCH_IN_PROGRESS
})
} else if (block.type === 'web_search_tool_result') {
if (
block.content &&
(block.content as WebSearchToolResultError).type === 'web_search_tool_result_error'
) {
onChunk({
type: ChunkType.ERROR,
error: {
code: (block.content as WebSearchToolResultError).error_code,
message: (block.content as WebSearchToolResultError).error_code
}
})
} else {
onChunk({
type: ChunkType.LLM_WEB_SEARCH_COMPLETE,
llm_web_search: {
results: block.content as Array<WebSearchResultBlock>,
source: WebSearchSource.ANTHROPIC
}
})
}
}
})
.on('thinking', (thinking) => {
hasThinkingContent = true
const currentTime = new Date().getTime() // Get current time for each chunk
if (time_first_token_millsec == 0) {
time_first_token_millsec = currentTime
}
// Set time_first_content_millsec ONLY when the first content (thinking or text) arrives
if (time_first_content_millsec === 0) {
time_first_content_millsec = currentTime
}
// Calculate thinking time as time elapsed since start until this chunk
const thinking_time = currentTime - time_first_content_millsec
onChunk({
type: ChunkType.THINKING_DELTA,
text: thinking,
thinking_millsec: thinking_time
})
thinking_content += thinking
})
.on('finalMessage', async (message) => {
const content = message.content[0]
if (content && content.type === 'text') {
onChunk({ type: ChunkType.TEXT_COMPLETE, text: content.text })
const toolResults = await parseAndCallTools(
content.text,
toolResponses,
onChunk,
idx,
mcpToolCallResponseToAnthropicMessage,
mcpTools,
isVisionModel(model)
)
if (toolResults.length > 0) {
userMessages.push({
role: message.role,
content: message.content
})
toolResults.forEach((ts) => userMessages.push(ts as MessageParam))
const newBody = body
newBody.messages = userMessages
await processStream(newBody, idx + 1)
}
}
const time_completion_millsec = new Date().getTime() - start_time_millsec
onChunk({
type: ChunkType.BLOCK_COMPLETE,
response: {
usage: {
prompt_tokens: message.usage.input_tokens,
completion_tokens: message.usage.output_tokens,
total_tokens: sum(Object.values(message.usage))
},
metrics: {
completion_tokens: message.usage.output_tokens,
time_completion_millsec,
time_first_token_millsec: time_first_token_millsec - start_time_millsec
}
}
})
// FIXME: 临时方案,重置时间戳和思考内容
time_first_token_millsec = 0
time_first_content_millsec = 0
resolve()
})
.on('error', (error) => reject(error))
.on('abort', () => {
reject(new Error('Request was aborted.'))
})
})
}
await processStream(body, 0).finally(cleanup)
}
/**
* Translate a message
* @param message - The message
* @param assistant - The assistant
* @param onResponse - The onResponse callback
* @returns The translated message
*/
public async translate(
content: string,
assistant: Assistant,
onResponse?: (text: string, isComplete: boolean) => void
) {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const messagesForApi = [{ role: 'user' as const, content: content }]
const stream = !!onResponse
const body: MessageCreateParamsNonStreaming = {
model: model.id,
messages: messagesForApi,
max_tokens: 4096,
temperature: assistant?.settings?.temperature,
system: assistant.prompt
}
if (!stream) {
const response = await this.sdk.messages.create({ ...body, stream: false })
return response.content[0].type === 'text' ? response.content[0].text : ''
}
let text = ''
return new Promise<string>((resolve, reject) => {
this.sdk.messages
.stream({ ...body, stream: true })
.on('text', (_text) => {
text += _text
onResponse?.(text, false)
})
.on('finalMessage', () => {
onResponse?.(text, true)
resolve(text)
})
.on('error', (error) => reject(error))
})
}
/**
* Summarize a message
* @param messages - The messages
* @param assistant - The assistant
* @returns The summary
*/
public async summaries(messages: Message[], assistant: Assistant): Promise<string> {
const model = getTopNamingModel() || assistant.model || getDefaultModel()
const userMessages = takeRight(messages, 5)
.filter((message) => !message.isPreset)
.map((message) => ({
role: message.role,
content: getMainTextContent(message)
}))
if (first(userMessages)?.role === 'assistant') {
userMessages.shift()
}
const userMessageContent = userMessages.reduce((prev, curr) => {
const currentContent = curr.role === 'user' ? `User: ${curr.content}` : `Assistant: ${curr.content}`
return prev + (prev ? '\n' : '') + currentContent
}, '')
const systemMessage = {
role: 'system',
content: (getStoreSetting('topicNamingPrompt') as string) || i18n.t('prompts.title')
}
const userMessage = {
role: 'user',
content: userMessageContent
}
const message = await this.sdk.messages.create({
messages: [userMessage] as Anthropic.Messages.MessageParam[],
model: model.id,
system: systemMessage.content,
stream: false,
max_tokens: 4096
})
const responseContent = message.content[0].type === 'text' ? message.content[0].text : ''
return removeSpecialCharactersForTopicName(responseContent)
}
/**
* Summarize a message for search
* @param messages - The messages
* @param assistant - The assistant
* @returns The summary
*/
public async summaryForSearch(messages: Message[], assistant: Assistant): Promise<string | null> {
const model = assistant.model || getDefaultModel()
const systemMessage = { content: assistant.prompt }
const userMessageContent = messages.map((m) => getMainTextContent(m)).join('\n')
const userMessage = {
role: 'user' as const,
content: userMessageContent
}
const lastUserMessage = messages[messages.length - 1]
const { abortController, cleanup } = this.createAbortController(lastUserMessage?.id)
const { signal } = abortController
const response = await this.sdk.messages
.create(
{
messages: [userMessage],
model: model.id,
system: systemMessage.content,
stream: false,
max_tokens: 4096
},
{ timeout: 20 * 1000, signal }
)
.finally(cleanup)
const responseContent = response.content[0].type === 'text' ? response.content[0].text : ''
return responseContent
}
/**
* Generate text
* @param prompt - The prompt
* @param content - The content
* @returns The generated text
*/
public async generateText({ prompt, content }: { prompt: string; content: string }): Promise<string> {
const model = getDefaultModel()
const message = await this.sdk.messages.create({
model: model.id,
system: prompt,
stream: false,
max_tokens: 4096,
messages: [
{
role: 'user',
content
}
]
})
return message.content[0].type === 'text' ? message.content[0].text : ''
}
/**
* Generate an image
* @returns The generated image
*/
public async generateImage(): Promise<string[]> {
return []
}
public async generateImageByChat(): Promise<void> {
throw new Error('Method not implemented.')
}
/**
* Generate suggestions
* @returns The suggestions
*/
public async suggestions(): Promise<Suggestion[]> {
return []
}
/**
* Check if the model is valid
* @param model - The model
* @param stream - Whether to use streaming interface
* @returns The validity of the model
*/
public async check(model: Model, stream: boolean = false): Promise<{ valid: boolean; error: Error | null }> {
if (!model) {
return { valid: false, error: new Error('No model found') }
}
const body = {
model: model.id,
messages: [{ role: 'user' as const, content: 'hi' }],
max_tokens: 100,
stream
}
try {
if (!stream) {
const message = await this.sdk.messages.create(body as MessageCreateParamsNonStreaming)
return {
valid: message.content.length > 0,
error: null
}
} else {
return await new Promise((resolve, reject) => {
let hasContent = false
this.sdk.messages
.stream(body)
.on('text', (text) => {
if (!hasContent && text) {
hasContent = true
resolve({ valid: true, error: null })
}
})
.on('finalMessage', (message) => {
if (!hasContent && message.content && message.content.length > 0) {
hasContent = true
resolve({ valid: true, error: null })
}
if (!hasContent) {
reject(new Error('Empty streaming response'))
}
})
.on('error', (error) => reject(error))
})
}
} catch (error: any) {
return {
valid: false,
error
}
}
}
/**
* Get the models
* @returns The models
*/
public async models(): Promise<OpenAI.Models.Model[]> {
return []
}
public async getEmbeddingDimensions(): Promise<number> {
return 0
}
}