cherry-studio/.yarn/patches/openai-npm-5.1.0-0e7b3ccb07.patch
Suzu ac7d4cb4fa
fix: check if embedding is base64 encoded before convert it to float … (#7014)
fix: check if embedding is base64 encoded before convert it to float array
2025-06-09 19:46:17 +08:00

280 lines
11 KiB
Diff
Vendored

diff --git a/client.js b/client.js
index 33b4ff6309d5f29187dab4e285d07dac20340bab..8f568637ee9e4677585931fb0284c8165a933f69 100644
--- a/client.js
+++ b/client.js
@@ -433,7 +433,7 @@ class OpenAI {
'User-Agent': this.getUserAgent(),
'X-Stainless-Retry-Count': String(retryCount),
...(options.timeout ? { 'X-Stainless-Timeout': String(Math.trunc(options.timeout / 1000)) } : {}),
- ...(0, detect_platform_1.getPlatformHeaders)(),
+ // ...(0, detect_platform_1.getPlatformHeaders)(),
'OpenAI-Organization': this.organization,
'OpenAI-Project': this.project,
},
diff --git a/client.mjs b/client.mjs
index c34c18213073540ebb296ea540b1d1ad39527906..1ce1a98256d7e90e26ca963582f235b23e996e73 100644
--- a/client.mjs
+++ b/client.mjs
@@ -430,7 +430,7 @@ export class OpenAI {
'User-Agent': this.getUserAgent(),
'X-Stainless-Retry-Count': String(retryCount),
...(options.timeout ? { 'X-Stainless-Timeout': String(Math.trunc(options.timeout / 1000)) } : {}),
- ...getPlatformHeaders(),
+ // ...getPlatformHeaders(),
'OpenAI-Organization': this.organization,
'OpenAI-Project': this.project,
},
diff --git a/core/error.js b/core/error.js
index a12d9d9ccd242050161adeb0f82e1b98d9e78e20..fe3a5462480558bc426deea147f864f12b36f9bd 100644
--- a/core/error.js
+++ b/core/error.js
@@ -40,7 +40,7 @@ class APIError extends OpenAIError {
if (!status || !headers) {
return new APIConnectionError({ message, cause: (0, errors_1.castToError)(errorResponse) });
}
- const error = errorResponse?.['error'];
+ const error = errorResponse?.['error'] || errorResponse;
if (status === 400) {
return new BadRequestError(status, error, message, headers);
}
diff --git a/core/error.mjs b/core/error.mjs
index 83cefbaffeb8c657536347322d8de9516af479a2..63334b7972ec04882aa4a0800c1ead5982345045 100644
--- a/core/error.mjs
+++ b/core/error.mjs
@@ -36,7 +36,7 @@ export class APIError extends OpenAIError {
if (!status || !headers) {
return new APIConnectionError({ message, cause: castToError(errorResponse) });
}
- const error = errorResponse?.['error'];
+ const error = errorResponse?.['error'] || errorResponse;
if (status === 400) {
return new BadRequestError(status, error, message, headers);
}
diff --git a/resources/embeddings.js b/resources/embeddings.js
index 2404264d4ba0204322548945ebb7eab3bea82173..8f1bc45cc45e0797d50989d96b51147b90ae6790 100644
--- a/resources/embeddings.js
+++ b/resources/embeddings.js
@@ -5,52 +5,64 @@ exports.Embeddings = void 0;
const resource_1 = require("../core/resource.js");
const utils_1 = require("../internal/utils.js");
class Embeddings extends resource_1.APIResource {
- /**
- * Creates an embedding vector representing the input text.
- *
- * @example
- * ```ts
- * const createEmbeddingResponse =
- * await client.embeddings.create({
- * input: 'The quick brown fox jumped over the lazy dog',
- * model: 'text-embedding-3-small',
- * });
- * ```
- */
- create(body, options) {
- const hasUserProvidedEncodingFormat = !!body.encoding_format;
- // No encoding_format specified, defaulting to base64 for performance reasons
- // See https://github.com/openai/openai-node/pull/1312
- let encoding_format = hasUserProvidedEncodingFormat ? body.encoding_format : 'base64';
- if (hasUserProvidedEncodingFormat) {
- (0, utils_1.loggerFor)(this._client).debug('embeddings/user defined encoding_format:', body.encoding_format);
- }
- const response = this._client.post('/embeddings', {
- body: {
- ...body,
- encoding_format: encoding_format,
- },
- ...options,
- });
- // if the user specified an encoding_format, return the response as-is
- if (hasUserProvidedEncodingFormat) {
- return response;
- }
- // in this stage, we are sure the user did not specify an encoding_format
- // and we defaulted to base64 for performance reasons
- // we are sure then that the response is base64 encoded, let's decode it
- // the returned result will be a float32 array since this is OpenAI API's default encoding
- (0, utils_1.loggerFor)(this._client).debug('embeddings/decoding base64 embeddings from base64');
- return response._thenUnwrap((response) => {
- if (response && response.data) {
- response.data.forEach((embeddingBase64Obj) => {
- const embeddingBase64Str = embeddingBase64Obj.embedding;
- embeddingBase64Obj.embedding = (0, utils_1.toFloat32Array)(embeddingBase64Str);
- });
- }
- return response;
- });
- }
+ /**
+ * Creates an embedding vector representing the input text.
+ *
+ * @example
+ * ```ts
+ * const createEmbeddingResponse =
+ * await client.embeddings.create({
+ * input: 'The quick brown fox jumped over the lazy dog',
+ * model: 'text-embedding-3-small',
+ * });
+ * ```
+ */
+ create(body, options) {
+ const hasUserProvidedEncodingFormat = !!body.encoding_format;
+ // No encoding_format specified, defaulting to base64 for performance reasons
+ // See https://github.com/openai/openai-node/pull/1312
+ let encoding_format = hasUserProvidedEncodingFormat
+ ? body.encoding_format
+ : "base64";
+ if (body.model.includes("jina")) {
+ encoding_format = undefined;
+ }
+ if (hasUserProvidedEncodingFormat) {
+ (0, utils_1.loggerFor)(this._client).debug(
+ "embeddings/user defined encoding_format:",
+ body.encoding_format
+ );
+ }
+ const response = this._client.post("/embeddings", {
+ body: {
+ ...body,
+ encoding_format: encoding_format,
+ },
+ ...options,
+ });
+ // if the user specified an encoding_format, return the response as-is
+ if (hasUserProvidedEncodingFormat || body.model.includes("jina")) {
+ return response;
+ }
+ // in this stage, we are sure the user did not specify an encoding_format
+ // and we defaulted to base64 for performance reasons
+ // we are sure then that the response is base64 encoded, let's decode it
+ // the returned result will be a float32 array since this is OpenAI API's default encoding
+ (0, utils_1.loggerFor)(this._client).debug(
+ "embeddings/decoding base64 embeddings from base64"
+ );
+ return response._thenUnwrap((response) => {
+ if (response && response.data && typeof response.data[0]?.embedding === 'string') {
+ response.data.forEach((embeddingBase64Obj) => {
+ const embeddingBase64Str = embeddingBase64Obj.embedding;
+ embeddingBase64Obj.embedding = (0, utils_1.toFloat32Array)(
+ embeddingBase64Str
+ );
+ });
+ }
+ return response;
+ });
+ }
}
exports.Embeddings = Embeddings;
//# sourceMappingURL=embeddings.js.map
diff --git a/resources/embeddings.mjs b/resources/embeddings.mjs
index 19dcaef578c194a89759c4360073cfd4f7dd2cbf..0284e9cc615c900eff508eb595f7360a74bd9200 100644
--- a/resources/embeddings.mjs
+++ b/resources/embeddings.mjs
@@ -2,51 +2,61 @@
import { APIResource } from "../core/resource.mjs";
import { loggerFor, toFloat32Array } from "../internal/utils.mjs";
export class Embeddings extends APIResource {
- /**
- * Creates an embedding vector representing the input text.
- *
- * @example
- * ```ts
- * const createEmbeddingResponse =
- * await client.embeddings.create({
- * input: 'The quick brown fox jumped over the lazy dog',
- * model: 'text-embedding-3-small',
- * });
- * ```
- */
- create(body, options) {
- const hasUserProvidedEncodingFormat = !!body.encoding_format;
- // No encoding_format specified, defaulting to base64 for performance reasons
- // See https://github.com/openai/openai-node/pull/1312
- let encoding_format = hasUserProvidedEncodingFormat ? body.encoding_format : 'base64';
- if (hasUserProvidedEncodingFormat) {
- loggerFor(this._client).debug('embeddings/user defined encoding_format:', body.encoding_format);
- }
- const response = this._client.post('/embeddings', {
- body: {
- ...body,
- encoding_format: encoding_format,
- },
- ...options,
- });
- // if the user specified an encoding_format, return the response as-is
- if (hasUserProvidedEncodingFormat) {
- return response;
- }
- // in this stage, we are sure the user did not specify an encoding_format
- // and we defaulted to base64 for performance reasons
- // we are sure then that the response is base64 encoded, let's decode it
- // the returned result will be a float32 array since this is OpenAI API's default encoding
- loggerFor(this._client).debug('embeddings/decoding base64 embeddings from base64');
- return response._thenUnwrap((response) => {
- if (response && response.data) {
- response.data.forEach((embeddingBase64Obj) => {
- const embeddingBase64Str = embeddingBase64Obj.embedding;
- embeddingBase64Obj.embedding = toFloat32Array(embeddingBase64Str);
- });
- }
- return response;
- });
- }
+ /**
+ * Creates an embedding vector representing the input text.
+ *
+ * @example
+ * ```ts
+ * const createEmbeddingResponse =
+ * await client.embeddings.create({
+ * input: 'The quick brown fox jumped over the lazy dog',
+ * model: 'text-embedding-3-small',
+ * });
+ * ```
+ */
+ create(body, options) {
+ const hasUserProvidedEncodingFormat = !!body.encoding_format;
+ // No encoding_format specified, defaulting to base64 for performance reasons
+ // See https://github.com/openai/openai-node/pull/1312
+ let encoding_format = hasUserProvidedEncodingFormat
+ ? body.encoding_format
+ : "base64";
+ if (body.model.includes("jina")) {
+ encoding_format = undefined;
+ }
+ if (hasUserProvidedEncodingFormat) {
+ loggerFor(this._client).debug(
+ "embeddings/user defined encoding_format:",
+ body.encoding_format
+ );
+ }
+ const response = this._client.post("/embeddings", {
+ body: {
+ ...body,
+ encoding_format: encoding_format,
+ },
+ ...options,
+ });
+ // if the user specified an encoding_format, return the response as-is
+ if (hasUserProvidedEncodingFormat || body.model.includes("jina")) {
+ return response;
+ }
+ // in this stage, we are sure the user did not specify an encoding_format
+ // and we defaulted to base64 for performance reasons
+ // we are sure then that the response is base64 encoded, let's decode it
+ // the returned result will be a float32 array since this is OpenAI API's default encoding
+ loggerFor(this._client).debug(
+ "embeddings/decoding base64 embeddings from base64"
+ );
+ return response._thenUnwrap((response) => {
+ if (response && response.data && typeof response.data[0]?.embedding === 'string') {
+ response.data.forEach((embeddingBase64Obj) => {
+ const embeddingBase64Str = embeddingBase64Obj.embedding;
+ embeddingBase64Obj.embedding = toFloat32Array(embeddingBase64Str);
+ });
+ }
+ return response;
+ });
+ }
}
//# sourceMappingURL=embeddings.mjs.map