mirror of
https://github.com/CherryHQ/cherry-studio.git
synced 2025-12-27 21:01:32 +08:00
- Reordered parameters in completions methods across AiProvider, AnthropicProvider, GeminiProvider, and OpenAIProvider to improve consistency. - Added detailed JSDoc comments for methods to clarify parameter usage and functionality. - Ensured mcpTools parameter is consistently included in completions method signatures.
547 lines
16 KiB
TypeScript
547 lines
16 KiB
TypeScript
import Anthropic from '@anthropic-ai/sdk'
|
|
import {
|
|
MessageCreateParamsNonStreaming,
|
|
MessageParam,
|
|
ToolResultBlockParam,
|
|
ToolUseBlock
|
|
} from '@anthropic-ai/sdk/resources'
|
|
import { DEFAULT_MAX_TOKENS } from '@renderer/config/constant'
|
|
import { isReasoningModel } from '@renderer/config/models'
|
|
import { getStoreSetting } from '@renderer/hooks/useSettings'
|
|
import i18n from '@renderer/i18n'
|
|
import { getAssistantSettings, getDefaultModel, getTopNamingModel } from '@renderer/services/AssistantService'
|
|
import { EVENT_NAMES } from '@renderer/services/EventService'
|
|
import {
|
|
filterContextMessages,
|
|
filterEmptyMessages,
|
|
filterUserRoleStartMessages
|
|
} from '@renderer/services/MessagesService'
|
|
import { Assistant, FileTypes, MCPToolResponse, Message, Model, Provider, Suggestion } from '@renderer/types'
|
|
import { removeSpecialCharactersForTopicName } from '@renderer/utils'
|
|
import {
|
|
anthropicToolUseToMcpTool,
|
|
callMCPTool,
|
|
filterMCPTools,
|
|
mcpToolsToAnthropicTools,
|
|
upsertMCPToolResponse
|
|
} from '@renderer/utils/mcp-tools'
|
|
import { first, flatten, isEmpty, sum, takeRight } from 'lodash'
|
|
import OpenAI from 'openai'
|
|
|
|
import { CompletionsParams } from '.'
|
|
import BaseProvider from './BaseProvider'
|
|
|
|
type ReasoningEffort = 'high' | 'medium' | 'low'
|
|
|
|
interface ReasoningConfig {
|
|
type: 'enabled' | 'disabled'
|
|
budget_tokens?: number
|
|
}
|
|
|
|
export default class AnthropicProvider extends BaseProvider {
|
|
private sdk: Anthropic
|
|
|
|
constructor(provider: Provider) {
|
|
super(provider)
|
|
this.sdk = new Anthropic({
|
|
apiKey: this.apiKey,
|
|
baseURL: this.getBaseURL(),
|
|
dangerouslyAllowBrowser: true
|
|
})
|
|
}
|
|
|
|
public getBaseURL(): string {
|
|
return this.provider.apiHost
|
|
}
|
|
|
|
/**
|
|
* Get the message parameter
|
|
* @param message - The message
|
|
* @returns The message parameter
|
|
*/
|
|
private async getMessageParam(message: Message): Promise<MessageParam> {
|
|
const parts: MessageParam['content'] = [
|
|
{
|
|
type: 'text',
|
|
text: await this.getMessageContent(message)
|
|
}
|
|
]
|
|
|
|
for (const file of message.files || []) {
|
|
if (file.type === FileTypes.IMAGE) {
|
|
const base64Data = await window.api.file.base64Image(file.id + file.ext)
|
|
parts.push({
|
|
type: 'image',
|
|
source: {
|
|
data: base64Data.base64,
|
|
media_type: base64Data.mime.replace('jpg', 'jpeg') as any,
|
|
type: 'base64'
|
|
}
|
|
})
|
|
}
|
|
|
|
if ([FileTypes.TEXT, FileTypes.DOCUMENT].includes(file.type)) {
|
|
const fileContent = await (await window.api.file.read(file.id + file.ext)).trim()
|
|
parts.push({
|
|
type: 'text',
|
|
text: file.origin_name + '\n' + fileContent
|
|
})
|
|
}
|
|
}
|
|
|
|
return {
|
|
role: message.role,
|
|
content: parts
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the temperature
|
|
* @param assistant - The assistant
|
|
* @param model - The model
|
|
* @returns The temperature
|
|
*/
|
|
private getTemperature(assistant: Assistant, model: Model) {
|
|
return isReasoningModel(model) ? undefined : assistant?.settings?.temperature
|
|
}
|
|
|
|
/**
|
|
* Get the top P
|
|
* @param assistant - The assistant
|
|
* @param model - The model
|
|
* @returns The top P
|
|
*/
|
|
private getTopP(assistant: Assistant, model: Model) {
|
|
return isReasoningModel(model) ? undefined : assistant?.settings?.topP
|
|
}
|
|
|
|
/**
|
|
* Get the reasoning effort
|
|
* @param assistant - The assistant
|
|
* @param model - The model
|
|
* @returns The reasoning effort
|
|
*/
|
|
private getReasoningEffort(assistant: Assistant, model: Model): ReasoningConfig | undefined {
|
|
if (!isReasoningModel(model)) {
|
|
return undefined
|
|
}
|
|
|
|
const effortRatios: Record<ReasoningEffort, number> = {
|
|
high: 0.8,
|
|
medium: 0.5,
|
|
low: 0.2
|
|
}
|
|
|
|
const effort = assistant?.settings?.reasoning_effort as ReasoningEffort
|
|
const effortRatio = effortRatios[effort]
|
|
|
|
if (!effortRatio) {
|
|
return undefined
|
|
}
|
|
|
|
const isClaude37Sonnet = model.id.includes('claude-3-7-sonnet') || model.id.includes('claude-3.7-sonnet')
|
|
|
|
if (!isClaude37Sonnet) {
|
|
return undefined
|
|
}
|
|
|
|
const maxTokens = assistant?.settings?.maxTokens || DEFAULT_MAX_TOKENS
|
|
const budgetTokens = Math.trunc(Math.max(Math.min(maxTokens * effortRatio, 32000), 1024))
|
|
|
|
return {
|
|
type: 'enabled',
|
|
budget_tokens: budgetTokens
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Generate completions
|
|
* @param messages - The messages
|
|
* @param assistant - The assistant
|
|
* @param mcpTools - The MCP tools
|
|
* @param onChunk - The onChunk callback
|
|
* @param onFilterMessages - The onFilterMessages callback
|
|
*/
|
|
public async completions({ messages, assistant, mcpTools, onChunk, onFilterMessages }: CompletionsParams) {
|
|
const defaultModel = getDefaultModel()
|
|
const model = assistant.model || defaultModel
|
|
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
|
|
|
|
const userMessagesParams: MessageParam[] = []
|
|
|
|
const _messages = filterUserRoleStartMessages(
|
|
filterContextMessages(filterEmptyMessages(takeRight(messages, contextCount + 2)))
|
|
)
|
|
|
|
onFilterMessages(_messages)
|
|
|
|
for (const message of _messages) {
|
|
userMessagesParams.push(await this.getMessageParam(message))
|
|
}
|
|
|
|
const userMessages = flatten(userMessagesParams)
|
|
const lastUserMessage = _messages.findLast((m) => m.role === 'user')
|
|
mcpTools = filterMCPTools(mcpTools, lastUserMessage?.enabledMCPs)
|
|
const tools = mcpTools ? mcpToolsToAnthropicTools(mcpTools) : undefined
|
|
|
|
const body: MessageCreateParamsNonStreaming = {
|
|
model: model.id,
|
|
messages: userMessages,
|
|
tools: isEmpty(tools) ? undefined : tools,
|
|
max_tokens: maxTokens || DEFAULT_MAX_TOKENS,
|
|
temperature: this.getTemperature(assistant, model),
|
|
top_p: this.getTopP(assistant, model),
|
|
system: assistant.prompt,
|
|
// @ts-ignore thinking
|
|
thinking: this.getReasoningEffort(assistant, model),
|
|
...this.getCustomParameters(assistant)
|
|
}
|
|
|
|
let time_first_token_millsec = 0
|
|
let time_first_content_millsec = 0
|
|
const start_time_millsec = new Date().getTime()
|
|
|
|
if (!streamOutput) {
|
|
const message = await this.sdk.messages.create({ ...body, stream: false })
|
|
const time_completion_millsec = new Date().getTime() - start_time_millsec
|
|
|
|
let text = ''
|
|
let reasoning_content = ''
|
|
|
|
if (message.content && message.content.length > 0) {
|
|
const thinkingBlock = message.content.find((block) => block.type === 'thinking')
|
|
const textBlock = message.content.find((block) => block.type === 'text')
|
|
|
|
if (thinkingBlock && 'thinking' in thinkingBlock) {
|
|
reasoning_content = thinkingBlock.thinking
|
|
}
|
|
|
|
if (textBlock && 'text' in textBlock) {
|
|
text = textBlock.text
|
|
}
|
|
}
|
|
|
|
return onChunk({
|
|
text,
|
|
reasoning_content,
|
|
usage: message.usage,
|
|
metrics: {
|
|
completion_tokens: message.usage.output_tokens,
|
|
time_completion_millsec,
|
|
time_first_token_millsec: 0
|
|
}
|
|
})
|
|
}
|
|
|
|
const { abortController, cleanup } = this.createAbortController(lastUserMessage?.id)
|
|
const { signal } = abortController
|
|
const toolResponses: MCPToolResponse[] = []
|
|
|
|
const processStream = (body: MessageCreateParamsNonStreaming, idx: number) => {
|
|
return new Promise<void>((resolve, reject) => {
|
|
const toolCalls: ToolUseBlock[] = []
|
|
let hasThinkingContent = false
|
|
const stream = this.sdk.messages
|
|
.stream({ ...body, stream: true }, { signal })
|
|
.on('text', (text) => {
|
|
if (window.keyv.get(EVENT_NAMES.CHAT_COMPLETION_PAUSED)) {
|
|
stream.controller.abort()
|
|
return resolve()
|
|
}
|
|
|
|
if (time_first_token_millsec == 0) {
|
|
time_first_token_millsec = new Date().getTime() - start_time_millsec
|
|
}
|
|
|
|
if (hasThinkingContent && time_first_content_millsec === 0) {
|
|
time_first_content_millsec = new Date().getTime()
|
|
}
|
|
|
|
const time_thinking_millsec = time_first_content_millsec
|
|
? time_first_content_millsec - start_time_millsec
|
|
: 0
|
|
|
|
const time_completion_millsec = new Date().getTime() - start_time_millsec
|
|
|
|
onChunk({
|
|
text,
|
|
metrics: {
|
|
completion_tokens: undefined,
|
|
time_completion_millsec,
|
|
time_first_token_millsec,
|
|
time_thinking_millsec
|
|
}
|
|
})
|
|
})
|
|
.on('thinking', (thinking) => {
|
|
hasThinkingContent = true
|
|
|
|
if (time_first_token_millsec == 0) {
|
|
time_first_token_millsec = new Date().getTime() - start_time_millsec
|
|
}
|
|
|
|
const time_completion_millsec = new Date().getTime() - start_time_millsec
|
|
|
|
onChunk({
|
|
reasoning_content: thinking,
|
|
text: '',
|
|
metrics: {
|
|
completion_tokens: undefined,
|
|
time_completion_millsec,
|
|
time_first_token_millsec
|
|
}
|
|
})
|
|
})
|
|
.on('contentBlock', (content) => {
|
|
if (content.type == 'tool_use') {
|
|
toolCalls.push(content)
|
|
}
|
|
})
|
|
.on('finalMessage', async (message) => {
|
|
if (toolCalls.length > 0) {
|
|
const toolCallResults: ToolResultBlockParam[] = []
|
|
|
|
for (const toolCall of toolCalls) {
|
|
const mcpTool = anthropicToolUseToMcpTool(mcpTools, toolCall)
|
|
if (mcpTool) {
|
|
upsertMCPToolResponse(toolResponses, { tool: mcpTool, status: 'invoking', id: toolCall.id }, onChunk)
|
|
const resp = await callMCPTool(mcpTool)
|
|
toolCallResults.push({ type: 'tool_result', tool_use_id: toolCall.id, content: resp.content })
|
|
upsertMCPToolResponse(
|
|
toolResponses,
|
|
{ tool: mcpTool, status: 'done', response: resp, id: toolCall.id },
|
|
onChunk
|
|
)
|
|
}
|
|
}
|
|
|
|
if (toolCallResults.length > 0) {
|
|
userMessages.push({
|
|
role: message.role,
|
|
content: message.content
|
|
})
|
|
|
|
userMessages.push({
|
|
role: 'user',
|
|
content: toolCallResults
|
|
})
|
|
|
|
const newBody = body
|
|
body.messages = userMessages
|
|
|
|
await processStream(newBody, idx + 1)
|
|
}
|
|
}
|
|
|
|
const time_completion_millsec = new Date().getTime() - start_time_millsec
|
|
const time_thinking_millsec = time_first_content_millsec
|
|
? time_first_content_millsec - start_time_millsec
|
|
: 0
|
|
|
|
onChunk({
|
|
text: '',
|
|
usage: {
|
|
prompt_tokens: message.usage.input_tokens,
|
|
completion_tokens: message.usage.output_tokens,
|
|
total_tokens: sum(Object.values(message.usage))
|
|
},
|
|
metrics: {
|
|
completion_tokens: message.usage.output_tokens,
|
|
time_completion_millsec,
|
|
time_first_token_millsec,
|
|
time_thinking_millsec
|
|
},
|
|
mcpToolResponse: toolResponses
|
|
})
|
|
|
|
resolve()
|
|
})
|
|
.on('error', (error) => reject(error))
|
|
})
|
|
}
|
|
|
|
await processStream(body, 0)
|
|
.catch((error) => {
|
|
// 不加这个错误抛不出来
|
|
throw error
|
|
})
|
|
.finally(cleanup)
|
|
}
|
|
|
|
/**
|
|
* Translate a message
|
|
* @param message - The message
|
|
* @param assistant - The assistant
|
|
* @param onResponse - The onResponse callback
|
|
* @returns The translated message
|
|
*/
|
|
public async translate(message: Message, assistant: Assistant, onResponse?: (text: string) => void) {
|
|
const defaultModel = getDefaultModel()
|
|
const model = assistant.model || defaultModel
|
|
const messages = [
|
|
{ role: 'system', content: assistant.prompt },
|
|
{ role: 'user', content: message.content }
|
|
]
|
|
|
|
const stream = onResponse ? true : false
|
|
|
|
const body: MessageCreateParamsNonStreaming = {
|
|
model: model.id,
|
|
messages: messages.filter((m) => m.role === 'user') as MessageParam[],
|
|
max_tokens: 4096,
|
|
temperature: assistant?.settings?.temperature,
|
|
system: assistant.prompt
|
|
}
|
|
|
|
if (!stream) {
|
|
const response = await this.sdk.messages.create({ ...body, stream: false })
|
|
return response.content[0].type === 'text' ? response.content[0].text : ''
|
|
}
|
|
|
|
let text = ''
|
|
|
|
return new Promise<string>((resolve, reject) => {
|
|
this.sdk.messages
|
|
.stream({ ...body, stream: true })
|
|
.on('text', (_text) => {
|
|
text += _text
|
|
onResponse?.(text)
|
|
})
|
|
.on('finalMessage', () => resolve(text))
|
|
.on('error', (error) => reject(error))
|
|
})
|
|
}
|
|
|
|
/**
|
|
* Summarize a message
|
|
* @param messages - The messages
|
|
* @param assistant - The assistant
|
|
* @returns The summary
|
|
*/
|
|
public async summaries(messages: Message[], assistant: Assistant): Promise<string> {
|
|
const model = getTopNamingModel() || assistant.model || getDefaultModel()
|
|
|
|
const userMessages = takeRight(messages, 5)
|
|
.filter((message) => !message.isPreset)
|
|
.map((message) => ({
|
|
role: message.role,
|
|
content: message.content
|
|
}))
|
|
|
|
if (first(userMessages)?.role === 'assistant') {
|
|
userMessages.shift()
|
|
}
|
|
|
|
const userMessageContent = userMessages.reduce((prev, curr) => {
|
|
const content = curr.role === 'user' ? `User: ${curr.content}` : `Assistant: ${curr.content}`
|
|
return prev + (prev ? '\n' : '') + content
|
|
}, '')
|
|
|
|
const systemMessage = {
|
|
role: 'system',
|
|
content: (getStoreSetting('topicNamingPrompt') as string) || i18n.t('prompts.title')
|
|
}
|
|
|
|
const userMessage = {
|
|
role: 'user',
|
|
content: userMessageContent
|
|
}
|
|
|
|
const message = await this.sdk.messages.create({
|
|
messages: [userMessage] as Anthropic.Messages.MessageParam[],
|
|
model: model.id,
|
|
system: systemMessage.content,
|
|
stream: false,
|
|
max_tokens: 4096
|
|
})
|
|
|
|
const content = message.content[0].type === 'text' ? message.content[0].text : ''
|
|
|
|
return removeSpecialCharactersForTopicName(content)
|
|
}
|
|
|
|
/**
|
|
* Generate text
|
|
* @param prompt - The prompt
|
|
* @param content - The content
|
|
* @returns The generated text
|
|
*/
|
|
public async generateText({ prompt, content }: { prompt: string; content: string }): Promise<string> {
|
|
const model = getDefaultModel()
|
|
|
|
const message = await this.sdk.messages.create({
|
|
model: model.id,
|
|
system: prompt,
|
|
stream: false,
|
|
max_tokens: 4096,
|
|
messages: [
|
|
{
|
|
role: 'user',
|
|
content
|
|
}
|
|
]
|
|
})
|
|
|
|
return message.content[0].type === 'text' ? message.content[0].text : ''
|
|
}
|
|
|
|
/**
|
|
* Generate an image
|
|
* @returns The generated image
|
|
*/
|
|
public async generateImage(): Promise<string[]> {
|
|
return []
|
|
}
|
|
|
|
/**
|
|
* Generate suggestions
|
|
* @returns The suggestions
|
|
*/
|
|
public async suggestions(): Promise<Suggestion[]> {
|
|
return []
|
|
}
|
|
|
|
/**
|
|
* Check if the model is valid
|
|
* @param model - The model
|
|
* @returns The validity of the model
|
|
*/
|
|
public async check(model: Model): Promise<{ valid: boolean; error: Error | null }> {
|
|
if (!model) {
|
|
return { valid: false, error: new Error('No model found') }
|
|
}
|
|
|
|
const body = {
|
|
model: model.id,
|
|
messages: [{ role: 'user', content: 'hi' }],
|
|
max_tokens: 100,
|
|
stream: false
|
|
}
|
|
|
|
try {
|
|
const message = await this.sdk.messages.create(body as MessageCreateParamsNonStreaming)
|
|
return {
|
|
valid: message.content.length > 0,
|
|
error: null
|
|
}
|
|
} catch (error: any) {
|
|
return {
|
|
valid: false,
|
|
error
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Get the models
|
|
* @returns The models
|
|
*/
|
|
public async models(): Promise<OpenAI.Models.Model[]> {
|
|
return []
|
|
}
|
|
|
|
public async getEmbeddingDimensions(): Promise<number> {
|
|
return 0
|
|
}
|
|
}
|