cherry-studio/src/renderer/src/providers/AnthropicProvider.ts
2025-01-13 16:11:09 +08:00

275 lines
8.3 KiB
TypeScript

import Anthropic from '@anthropic-ai/sdk'
import { MessageCreateParamsNonStreaming, MessageParam } from '@anthropic-ai/sdk/resources'
import { DEFAULT_MAX_TOKENS } from '@renderer/config/constant'
import { getStoreSetting } from '@renderer/hooks/useSettings'
import i18n from '@renderer/i18n'
import { getAssistantSettings, getDefaultModel, getTopNamingModel } from '@renderer/services/AssistantService'
import { EVENT_NAMES } from '@renderer/services/EventService'
import { filterContextMessages } from '@renderer/services/MessagesService'
import { Assistant, FileTypes, Message, Model, Provider, Suggestion } from '@renderer/types'
import { removeSpecialCharacters } from '@renderer/utils'
import { first, flatten, sum, takeRight } from 'lodash'
import OpenAI from 'openai'
import { CompletionsParams } from '.'
import BaseProvider from './BaseProvider'
export default class AnthropicProvider extends BaseProvider {
private sdk: Anthropic
constructor(provider: Provider) {
super(provider)
this.sdk = new Anthropic({ apiKey: this.apiKey, baseURL: this.getBaseURL() })
}
public getBaseURL(): string {
return this.provider.apiHost
}
private async getMessageParam(message: Message): Promise<MessageParam> {
const parts: MessageParam['content'] = [
{
type: 'text',
text: await this.getMessageContent(message)
}
]
for (const file of message.files || []) {
if (file.type === FileTypes.IMAGE) {
const base64Data = await window.api.file.base64Image(file.id + file.ext)
parts.push({
type: 'image',
source: {
data: base64Data.base64,
media_type: base64Data.mime.replace('jpg', 'jpeg') as any,
type: 'base64'
}
})
}
if ([FileTypes.TEXT, FileTypes.DOCUMENT].includes(file.type)) {
const fileContent = await (await window.api.file.read(file.id + file.ext)).trim()
parts.push({
type: 'text',
text: file.origin_name + '\n' + fileContent
})
}
}
return {
role: message.role,
content: parts
}
}
public async completions({ messages, assistant, onChunk, onFilterMessages }: CompletionsParams) {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const { contextCount, maxTokens, streamOutput } = getAssistantSettings(assistant)
const userMessagesParams: MessageParam[] = []
const _messages = filterContextMessages(takeRight(messages, contextCount + 2))
onFilterMessages(_messages)
for (const message of _messages) {
userMessagesParams.push(await this.getMessageParam(message))
}
const userMessages = flatten(userMessagesParams)
if (first(userMessages)?.role === 'assistant') {
userMessages.shift()
}
const body: MessageCreateParamsNonStreaming = {
model: model.id,
messages: userMessages,
max_tokens: maxTokens || DEFAULT_MAX_TOKENS,
temperature: assistant?.settings?.temperature,
top_p: assistant?.settings?.topP,
system: assistant.prompt,
...this.getCustomParameters(assistant)
}
let time_first_token_millsec = 0
const start_time_millsec = new Date().getTime()
if (!streamOutput) {
const message = await this.sdk.messages.create({ ...body, stream: false })
const time_completion_millsec = new Date().getTime() - start_time_millsec
return onChunk({
text: message.content[0].type === 'text' ? message.content[0].text : '',
usage: message.usage,
metrics: {
completion_tokens: message.usage.output_tokens,
time_completion_millsec,
time_first_token_millsec: 0
}
})
}
return new Promise<void>((resolve, reject) => {
const stream = this.sdk.messages
.stream({ ...body, stream: true })
.on('text', (text) => {
if (window.keyv.get(EVENT_NAMES.CHAT_COMPLETION_PAUSED)) {
stream.controller.abort()
return resolve()
}
if (time_first_token_millsec == 0) {
time_first_token_millsec = new Date().getTime() - start_time_millsec
}
const time_completion_millsec = new Date().getTime() - start_time_millsec
onChunk({
text,
metrics: {
completion_tokens: undefined,
time_completion_millsec,
time_first_token_millsec
}
})
})
.on('finalMessage', (message) => {
onChunk({
text: '',
usage: {
prompt_tokens: message.usage.input_tokens,
completion_tokens: message.usage.output_tokens,
total_tokens: sum(Object.values(message.usage))
},
metrics: {
completion_tokens: message.usage.output_tokens,
time_completion_millsec: new Date().getTime() - start_time_millsec,
time_first_token_millsec
}
})
resolve()
})
.on('error', (error) => reject(error))
})
}
public async translate(message: Message, assistant: Assistant) {
const defaultModel = getDefaultModel()
const model = assistant.model || defaultModel
const messages = [
{ role: 'system', content: assistant.prompt },
{ role: 'user', content: message.content }
]
const response = await this.sdk.messages.create({
model: model.id,
messages: messages.filter((m) => m.role === 'user') as MessageParam[],
max_tokens: 4096,
temperature: assistant?.settings?.temperature,
system: assistant.prompt,
stream: false
})
return response.content[0].type === 'text' ? response.content[0].text : ''
}
public async summaries(messages: Message[], assistant: Assistant): Promise<string> {
const model = getTopNamingModel() || assistant.model || getDefaultModel()
const userMessages = takeRight(messages, 5)
.filter((message) => !message.isPreset)
.map((message) => ({
role: message.role,
content: message.content
}))
if (first(userMessages)?.role === 'assistant') {
userMessages.shift()
}
const userMessageContent = userMessages.reduce((prev, curr) => {
const content = curr.role === 'user' ? `User: ${curr.content}` : `Assistant: ${curr.content}`
return prev + (prev ? '\n' : '') + content
}, '')
const systemMessage = {
role: 'system',
content: (getStoreSetting('topicNamingPrompt') as string) || i18n.t('prompts.summarize')
}
const userMessage = {
role: 'user',
content: userMessageContent
}
const message = await this.sdk.messages.create({
messages: [userMessage] as Anthropic.Messages.MessageParam[],
model: model.id,
system: systemMessage.content,
stream: false,
max_tokens: 4096
})
const content = message.content[0].type === 'text' ? message.content[0].text : ''
return removeSpecialCharacters(content)
}
public async generateText({ prompt, content }: { prompt: string; content: string }): Promise<string> {
const model = getDefaultModel()
const message = await this.sdk.messages.create({
model: model.id,
system: prompt,
stream: false,
max_tokens: 4096,
messages: [
{
role: 'user',
content
}
]
})
return message.content[0].type === 'text' ? message.content[0].text : ''
}
public async generateImage(): Promise<string[]> {
return []
}
public async suggestions(): Promise<Suggestion[]> {
return []
}
public async check(model: Model): Promise<{ valid: boolean; error: Error | null }> {
if (!model) {
return { valid: false, error: new Error('No model found') }
}
const body = {
model: model.id,
messages: [{ role: 'user', content: 'hi' }],
max_tokens: 100,
stream: false
}
try {
const message = await this.sdk.messages.create(body as MessageCreateParamsNonStreaming)
return {
valid: message.content.length > 0,
error: null
}
} catch (error: any) {
return {
valid: false,
error
}
}
}
public async models(): Promise<OpenAI.Models.Model[]> {
return []
}
public async getEmbeddingDimensions(): Promise<number> {
return 0
}
}