cherry-studio/src/main/apiServer/services/models.ts
SuYao dcdd1bf852
refactor: replace renderToolContent function with ToolContent component for improved readability (#11300)
* refactor: replace renderToolContent function with ToolContent component for improved readability

* fix

* fix test
2025-11-21 09:55:46 +08:00

114 lines
3.6 KiB
TypeScript

import { isEmpty } from 'lodash'
import type { ApiModel, ApiModelsFilter, ApiModelsResponse } from '../../../renderer/src/types/apiModels'
import { loggerService } from '../../services/LoggerService'
import {
getAvailableProviders,
getProviderAnthropicModelChecker,
listAllAvailableModels,
transformModelToOpenAI
} from '../utils'
const logger = loggerService.withContext('ModelsService')
// Re-export for backward compatibility
export type ModelsFilter = ApiModelsFilter
export class ModelsService {
async getModels(filter: ModelsFilter): Promise<ApiModelsResponse> {
try {
logger.debug('Getting available models from providers', { filter })
let providers = await getAvailableProviders()
if (filter.providerType === 'anthropic') {
providers = providers.filter((p) => p.type === 'anthropic' || !isEmpty(p.anthropicApiHost?.trim()))
}
const models = await listAllAvailableModels(providers)
// Use Map to deduplicate models by their full ID (provider:model_id)
const uniqueModels = new Map<string, ApiModel>()
for (const model of models) {
const provider = providers.find((p) => p.id === model.provider)
// logger.debug(`Processing model ${model.id}`)
if (!provider) {
logger.debug(`Skipping model ${model.id} . Reason: Provider not found.`)
continue
}
if (filter.providerType === 'anthropic') {
const checker = getProviderAnthropicModelChecker(provider.id)
if (!checker(model)) {
logger.debug(`Skipping model ${model.id} from ${model.provider}. Reason: Not an Anthropic model.`)
continue
}
}
const openAIModel = transformModelToOpenAI(model, provider)
const fullModelId = openAIModel.id // This is already in format "provider:model_id"
// Only add if not already present (first occurrence wins)
if (!uniqueModels.has(fullModelId)) {
uniqueModels.set(fullModelId, openAIModel)
} else {
logger.debug(`Skipping duplicate model: ${fullModelId}`)
}
}
let modelData = Array.from(uniqueModels.values())
const total = modelData.length
// Apply pagination
const offset = filter?.offset || 0
const limit = filter?.limit
if (limit !== undefined) {
modelData = modelData.slice(offset, offset + limit)
logger.debug(
`Applied pagination: offset=${offset}, limit=${limit}, showing ${modelData.length} of ${total} models`
)
} else if (offset > 0) {
modelData = modelData.slice(offset)
logger.debug(`Applied offset: offset=${offset}, showing ${modelData.length} of ${total} models`)
}
logger.info('Models retrieved', {
returned: modelData.length,
discovered: models.length,
filter
})
if (models.length > total) {
logger.debug(`Filtered out ${models.length - total} models after deduplication and filtering`)
}
const response: ApiModelsResponse = {
object: 'list',
data: modelData
}
// Add pagination metadata if applicable
if (filter?.limit !== undefined || filter?.offset !== undefined) {
response.total = total
response.offset = offset
if (filter?.limit !== undefined) {
response.limit = filter.limit
}
}
return response
} catch (error: any) {
logger.error('Error getting models', { error, filter })
return {
object: 'list',
data: []
}
}
}
}
// Export singleton instance
export const modelsService = new ModelsService()