chore: sync vless encryption code
Some checks are pending
Test / test (1.20, macos-13) (push) Waiting to run
Test / test (1.20, macos-latest) (push) Waiting to run
Test / test (1.20, ubuntu-24.04-arm) (push) Waiting to run
Test / test (1.20, ubuntu-latest) (push) Waiting to run
Test / test (1.20, windows-latest) (push) Waiting to run
Test / test (1.21, macos-13) (push) Waiting to run
Test / test (1.21, macos-latest) (push) Waiting to run
Test / test (1.21, ubuntu-24.04-arm) (push) Waiting to run
Test / test (1.21, ubuntu-latest) (push) Waiting to run
Test / test (1.21, windows-latest) (push) Waiting to run
Test / test (1.22, macos-13) (push) Waiting to run
Test / test (1.22, macos-latest) (push) Waiting to run
Test / test (1.22, ubuntu-24.04-arm) (push) Waiting to run
Test / test (1.22, ubuntu-latest) (push) Waiting to run
Test / test (1.22, windows-latest) (push) Waiting to run
Test / test (1.23, macos-13) (push) Waiting to run
Test / test (1.23, macos-latest) (push) Waiting to run
Test / test (1.23, ubuntu-24.04-arm) (push) Waiting to run
Test / test (1.23, ubuntu-latest) (push) Waiting to run
Test / test (1.23, windows-latest) (push) Waiting to run
Test / test (1.24, macos-13) (push) Waiting to run
Test / test (1.24, macos-latest) (push) Waiting to run
Test / test (1.24, ubuntu-24.04-arm) (push) Waiting to run
Test / test (1.24, ubuntu-latest) (push) Waiting to run
Test / test (1.24, windows-latest) (push) Waiting to run
Test / test (1.25, macos-13) (push) Waiting to run
Test / test (1.25, macos-latest) (push) Waiting to run
Test / test (1.25, ubuntu-24.04-arm) (push) Waiting to run
Test / test (1.25, ubuntu-latest) (push) Waiting to run
Test / test (1.25, windows-latest) (push) Waiting to run
Trigger CMFA Update / trigger-CMFA-update (push) Waiting to run

This commit is contained in:
wwqgtxx 2025-08-25 01:10:35 +08:00
parent 2605bf78f9
commit aca0d97beb
4 changed files with 54 additions and 60 deletions

View File

@ -75,14 +75,13 @@ func (i *ClientInstance) Handshake(conn net.Conn) (*CommonConn, error) {
iv := clientHello[:16]
rand.Read(iv)
relays := clientHello[16:ivAndRealysLength]
var nfsPublicKey, nfsKey []byte
var nfsKey []byte
var lastCTR cipher.Stream
for j, k := range i.NfsPKeys {
var index = 32
if k, ok := k.(*ecdh.PublicKey); ok {
privateKey, _ := ecdh.X25519().GenerateKey(rand.Reader)
nfsPublicKey = privateKey.PublicKey().Bytes()
copy(relays, nfsPublicKey)
copy(relays, privateKey.PublicKey().Bytes())
var err error
nfsKey, err = privateKey.ECDH(k)
if err != nil {
@ -90,11 +89,12 @@ func (i *ClientInstance) Handshake(conn net.Conn) (*CommonConn, error) {
}
}
if k, ok := k.(*mlkem.EncapsulationKey768); ok {
nfsKey, nfsPublicKey = k.Encapsulate()
copy(relays, nfsPublicKey)
var ciphertext []byte
nfsKey, ciphertext = k.Encapsulate()
copy(relays, ciphertext)
index = 1088
}
if i.XorMode > 0 { // this xor can (others can't) be decrypted by client's config, revealing an X25519 public key / ML-KEM-768 ciphertext, but it is not important
if i.XorMode > 0 { // this xor can (others can't) be recovered by client's config, revealing an X25519 public key / ML-KEM-768 ciphertext, that's why "native" values
NewCTR(i.NfsPKeysBytes[j], iv).XORKeyStream(relays, relays[:index]) // make X25519 public key / ML-KEM-768 ciphertext distinguishable from random bytes
}
if lastCTR != nil {
@ -107,20 +107,20 @@ func (i *ClientInstance) Handshake(conn net.Conn) (*CommonConn, error) {
lastCTR.XORKeyStream(relays[index:], i.Hash32s[j+1][:])
relays = relays[index+32:]
}
nfsGCM := NewGCM(nfsPublicKey, nfsKey)
nfsGCM := NewGCM(iv, nfsKey)
if i.Seconds > 0 {
i.RWLock.RLock()
if time.Now().Before(i.Expire) {
c.Client = i
c.UnitedKey = append(i.PfsKey, nfsKey...)
c.UnitedKey = append(i.PfsKey, nfsKey...) // different unitedKey for each connection
nfsGCM.Seal(clientHello[:ivAndRealysLength], nil, EncodeLength(32), nil)
nfsGCM.Seal(clientHello[:ivAndRealysLength+18], nil, i.Ticket, nil)
i.RWLock.RUnlock()
c.PreWrite = clientHello[:ivAndRealysLength+18+32]
c.GCM = NewGCM(clientHello[ivAndRealysLength+18:ivAndRealysLength+18+32], c.UnitedKey)
if i.XorMode == 2 {
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, iv), nil, len(c.PreWrite), 32)
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, iv), nil, len(c.PreWrite), 16)
}
return c, nil
}
@ -141,21 +141,9 @@ func (i *ClientInstance) Handshake(conn net.Conn) (*CommonConn, error) {
if _, err := conn.Write(clientHello); err != nil {
return nil, err
}
// padding can be sent in a fragmented way, to create variable traffic pattern, before VLESS flow takes control
// padding can be sent in a fragmented way, to create variable traffic pattern, before inner VLESS flow takes control
encryptedLength := make([]byte, 18)
if _, err := io.ReadFull(conn, encryptedLength); err != nil {
return nil, err
}
if _, err := nfsGCM.Open(encryptedLength[:0], make([]byte, 12), encryptedLength, nil); err != nil {
return nil, err
}
length := DecodeLength(encryptedLength[:2])
if length < 1088+32+16 { // server may send more public keys
return nil, errors.New("too short length")
}
encryptedPfsPublicKey := make([]byte, length)
encryptedPfsPublicKey := make([]byte, 1088+32+16)
if _, err := io.ReadFull(conn, encryptedPfsPublicKey); err != nil {
return nil, err
}
@ -194,22 +182,18 @@ func (i *ClientInstance) Handshake(conn net.Conn) (*CommonConn, error) {
i.RWLock.Unlock()
}
encryptedLength := make([]byte, 18)
if _, err := io.ReadFull(conn, encryptedLength); err != nil {
return nil, err
}
if _, err := c.PeerGCM.Open(encryptedLength[:0], nil, encryptedLength, nil); err != nil {
return nil, err
}
encryptedPadding := make([]byte, DecodeLength(encryptedLength[:2])) // TODO: move to Read()
if _, err := io.ReadFull(conn, encryptedPadding); err != nil {
return nil, err
}
if _, err := c.PeerGCM.Open(encryptedPadding[:0], nil, encryptedPadding, nil); err != nil {
return nil, err
}
length := DecodeLength(encryptedLength[:2])
c.PeerPadding = make([]byte, length) // important: allows server sends padding slowly, eliminating 1-RTT's traffic pattern
if i.XorMode == 2 {
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, iv), NewCTR(c.UnitedKey, encryptedTicket[:16]), 0, 0)
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, iv), NewCTR(c.UnitedKey, encryptedTicket[:16]), 0, length)
}
return c, nil
}

View File

@ -22,6 +22,7 @@ type CommonConn struct {
UnitedKey []byte
PreWrite []byte
GCM *GCM
PeerPadding []byte
PeerGCM *GCM
input bytes.Reader // PeerCache
}
@ -39,12 +40,12 @@ func (c *CommonConn) Write(b []byte) (int, error) {
n += len(b)
data = make([]byte, 5+len(b)+16)
EncodeHeader(data, len(b)+16)
aead := c.GCM
max := false
if bytes.Equal(c.GCM.Nonce[:], MaxNonce) {
aead = nil
max = true
}
c.GCM.Seal(data[:5], nil, b, data[:5])
if aead == nil {
if max {
c.GCM = NewGCM(data[5:], c.UnitedKey)
}
if c.PreWrite != nil {
@ -63,15 +64,24 @@ func (c *CommonConn) Read(b []byte) (int, error) {
return 0, nil
}
if c.PeerGCM == nil { // client's 0-RTT
serverRandom := make([]byte, 32)
serverRandom := make([]byte, 16)
if _, err := io.ReadFull(c.Conn, serverRandom); err != nil {
return 0, err
}
c.PeerGCM = NewGCM(serverRandom, c.UnitedKey)
if xorConn, ok := c.Conn.(*XorConn); ok {
xorConn.PeerCTR = NewCTR(c.UnitedKey, serverRandom[16:])
xorConn.PeerCTR = NewCTR(c.UnitedKey, serverRandom)
}
}
if c.PeerPadding != nil { // client's 1-RTT
if _, err := io.ReadFull(c.Conn, c.PeerPadding); err != nil {
return 0, err
}
if _, err := c.PeerGCM.Open(c.PeerPadding[:0], nil, c.PeerPadding, nil); err != nil {
return 0, err
}
c.PeerPadding = nil
}
if c.input.Len() > 0 {
return c.input.Read(b)
}
@ -96,13 +106,13 @@ func (c *CommonConn) Read(b []byte) (int, error) {
if len(dst) <= len(b) {
dst = b[:len(dst)] // avoids another copy()
}
var peerAEAD *GCM
var newGCM *GCM
if bytes.Equal(c.PeerGCM.Nonce[:], MaxNonce) {
peerAEAD = NewGCM(peerData, c.UnitedKey)
newGCM = NewGCM(peerData, c.UnitedKey)
}
_, err = c.PeerGCM.Open(dst[:0], nil, peerData, h)
if peerAEAD != nil {
c.PeerGCM = peerAEAD
if newGCM != nil {
c.PeerGCM = newGCM
}
if err != nil {
return 0, err

View File

@ -18,4 +18,5 @@
// https://github.com/XTLS/Xray-core/commit/38cc306c955c362f044e074049a5e67b6b9fb389
// https://github.com/XTLS/Xray-core/commit/b33555cc0a52d0af3c23d2af8fca42f8a685d9af
// https://github.com/XTLS/Xray-core/commit/ad7140641c44239c9dcdc3d7215ea639b1f0841c
// https://github.com/XTLS/Xray-core/commit/0199dea39988a1a1b846d0bf8598631bade40902
package encryption

View File

@ -109,7 +109,7 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
}
iv := ivAndRelays[:16]
relays := ivAndRelays[16:]
var nfsPublicKey, nfsKey []byte
var nfsKey []byte
var lastCTR cipher.Stream
for j, k := range i.NfsSKeys {
if lastCTR != nil {
@ -122,9 +122,8 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
if i.XorMode > 0 {
NewCTR(i.NfsPKeysBytes[j], iv).XORKeyStream(relays, relays[:index]) // we don't use buggy elligator, because we have PSK :)
}
nfsPublicKey = relays[:index]
if k, ok := k.(*ecdh.PrivateKey); ok {
publicKey, err := ecdh.X25519().NewPublicKey(nfsPublicKey)
publicKey, err := ecdh.X25519().NewPublicKey(relays[:index])
if err != nil {
return nil, err
}
@ -135,7 +134,7 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
}
if k, ok := k.(*mlkem.DecapsulationKey768); ok {
var err error
nfsKey, err = k.Decapsulate(nfsPublicKey)
nfsKey, err = k.Decapsulate(relays[:index])
if err != nil {
return nil, err
}
@ -151,7 +150,7 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
}
relays = relays[32:]
}
nfsGCM := NewGCM(nfsPublicKey, nfsKey)
nfsGCM := NewGCM(iv, nfsKey)
encryptedLength := make([]byte, 18)
if _, err := io.ReadFull(conn, encryptedLength); err != nil {
@ -187,16 +186,16 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
conn.Write(noises) // make client do new handshake
return nil, errors.New("expired ticket")
}
if _, replay := s.Replays.LoadOrStore([32]byte(encryptedTicket), true); replay {
if _, replay := s.Replays.LoadOrStore([32]byte(nfsKey), true); replay { // prevents bad client also
return nil, errors.New("replay detected")
}
c.UnitedKey = append(s.PfsKey, nfsKey...) // the same key links the upload & download
c.PreWrite = make([]byte, 32) // always trust yourself, not the client
c.UnitedKey = append(s.PfsKey, nfsKey...) // the same nfsKey links the upload & download
c.PreWrite = make([]byte, 16) // always trust yourself, not the client
rand.Read(c.PreWrite)
c.GCM = NewGCM(c.PreWrite, c.UnitedKey)
c.PeerGCM = NewGCM(encryptedTicket, c.UnitedKey)
c.PeerGCM = NewGCM(encryptedTicket, c.UnitedKey) // unchangeable ctx, and different ctx length for upload / download
if i.XorMode == 2 {
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, c.PreWrite[16:]), NewCTR(c.UnitedKey, iv), 32, 0)
c.Conn = NewXorConn(conn, NewCTR(c.UnitedKey, c.PreWrite), NewCTR(c.UnitedKey, iv), 16, 0) // it doesn't matter if the attacker sends client's iv back to the client
}
return c, nil
}
@ -234,12 +233,11 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
rand.Read(ticket)
copy(ticket, EncodeLength(int(i.Seconds*4/5)))
pfsKeyExchangeLength := 18 + 1088 + 32 + 16
pfsKeyExchangeLength := 1088 + 32 + 16
encryptedTicketLength := 32
paddingLength := int(randBetween(100, 1000))
serverHello := make([]byte, pfsKeyExchangeLength+encryptedTicketLength+paddingLength)
nfsGCM.Seal(serverHello[:0], make([]byte, 12), EncodeLength(pfsKeyExchangeLength-18), nil) // it is safe because our nonce starts from 1
nfsGCM.Seal(serverHello[:18], MaxNonce, pfsPublicKey, nil)
nfsGCM.Seal(serverHello[:0], MaxNonce, pfsPublicKey, nil)
c.GCM.Seal(serverHello[:pfsKeyExchangeLength], nil, ticket, nil)
padding := serverHello[pfsKeyExchangeLength+encryptedTicketLength:]
c.GCM.Seal(padding[:0], nil, EncodeLength(paddingLength-18), nil)
@ -248,7 +246,7 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
if _, err := conn.Write(serverHello); err != nil {
return nil, err
}
// padding can be sent in a fragmented way, to create variable traffic pattern, before VLESS flow takes control
// padding can be sent in a fragmented way, to create variable traffic pattern, before inner VLESS flow takes control
if i.Seconds > 0 {
i.RWLock.Lock()
@ -259,6 +257,7 @@ func (i *ServerInstance) Handshake(conn net.Conn) (*CommonConn, error) {
i.RWLock.Unlock()
}
// important: allows client sends padding slowly, eliminating 1-RTT's traffic pattern
if _, err := io.ReadFull(conn, encryptedLength); err != nil {
return nil, err
}